Cargando…
Dimer-Dependent Intrinsic/Basal Activity of the Class B G Protein-Coupled Receptor PAC1 Promotes Cellular Anti-Apoptotic Activity through Wnt/β-Catenin Pathways that Are Associated with Dimer Endocytosis
The high expression of PACAP (pituitary adenylate cyclase-activating polypeptide)-preferring receptor PAC1 is associated with nerve injury and tumors. Our previous report (Yu R, et al. PLoS One 2012; 7: e51811) confirmed the dimerization of PAC1 and found that the M-PAC1 mutation in the N-terminal f...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4245242/ https://www.ncbi.nlm.nih.gov/pubmed/25426938 http://dx.doi.org/10.1371/journal.pone.0113913 |
Sumario: | The high expression of PACAP (pituitary adenylate cyclase-activating polypeptide)-preferring receptor PAC1 is associated with nerve injury and tumors. Our previous report (Yu R, et al. PLoS One 2012; 7: e51811) confirmed the dimerization of PAC1 and found that the M-PAC1 mutation in the N-terminal first Cys/Ala lost the ability to form dimers. In this study, Chinese hamster ovary (CHO-K1) cells overexpressing wild-type PAC1 (PAC1-CHO) had significantly higher anti-apoptotic activities against serum withdrawal-induced apoptosis associated with a lower caspase 3 activity and a higher Bcl-2 level in a ligand-independent manner than those of CHO cells overexpressing the mutant M-PAC1 (M-PAC1-CHO). PAC1-CHO had significantly higher β-catenin, cyclin D1 and c-myc levels corresponding to the Wnt/β-catenin signal than did M-PAC1-CHO. In addition, the Wnt/β-catenin pathway inhibitor XAV939 significantly inhibited the anti-apoptotic activities of PAC1-CHO. Top-flash assays demonstrated that PAC1-CHO had a significantly stronger Wnt/β-catenin signal than did M-PAC1-CHO. Acetylcysteine (NAC) as an inhibitor of the dimerization of PAC1 inhibited the anti-apoptotic activities that were endowed by PAC1 and decreased the Wnt/β-catenin signal in Top-flash assays. In the PAC1 Tet (tetracycline)-on inducible gene expression system by doxycycline (Dox), higher expression levels of PAC1 resulted in higher anti-apoptotic activities that were associated with a stronger Wnt/β-catenin signal. A similar correlation was also found with the down-regulation of PAC1 in the Neuro2a neuroblastoma cell. BiFC combined with fluorescence confocal imaging indicated that during serum-withdrawal-induced apoptosis, PAC1 dimers displayed significant endocytosis. These findings indicate that PAC1 has ligand-independent and dimer-dependent intrinsic/basal activity, conferring cells with anti-apoptotic activities against serum withdrawal, which is involved in the Wnt/β-catenin signal and is associated with the endocytosis of PAC1 dimers. The discovery and study of the dimer-dependent basal activity of PAC1 not only help us understand the physiological and pathological role of PAC1 but also promote the development of drugs targeting PAC1. |
---|