Cargando…

Structural and biochemical impact of C8-aryl-guanine adducts within the NarI recognition DNA sequence: influence of aryl ring size on targeted and semi-targeted mutagenicity

Chemical mutagens with an aromatic ring system may be enzymatically transformed to afford aryl radical species that preferentially react at the C8-site of 2′-deoxyguanosine (dG). The resulting carbon-linked C8-aryl-dG adduct possesses altered biophysical and genetic coding properties compared to the...

Descripción completa

Detalles Bibliográficos
Autores principales: Sproviero, Michael, Verwey, Anne M.R., Rankin, Katherine M., Witham, Aaron A., Soldatov, Dmitriy V., Manderville, Richard A., Fekry, Mostafa I., Sturla, Shana J., Sharma, Purshotam, Wetmore, Stacey D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4245952/
https://www.ncbi.nlm.nih.gov/pubmed/25361967
http://dx.doi.org/10.1093/nar/gku1093
Descripción
Sumario:Chemical mutagens with an aromatic ring system may be enzymatically transformed to afford aryl radical species that preferentially react at the C8-site of 2′-deoxyguanosine (dG). The resulting carbon-linked C8-aryl-dG adduct possesses altered biophysical and genetic coding properties compared to the precursor nucleoside. Described herein are structural and in vitro mutagenicity studies of a series of fluorescent C8-aryl-dG analogues that differ in aryl ring size and are representative of authentic DNA adducts. These structural mimics have been inserted into a hotspot sequence for frameshift mutations, namely, the reiterated G(3)-position of the NarI sequence within 12mer (NarI(12)) and 22mer (NarI(22)) oligonucleotides. In the NarI(12) duplexes, the C8-aryl-dG adducts display a preference for adopting an anti-conformation opposite C, despite the strong syn preference of the free nucleoside. Using the NarI(22) sequence as a template for DNA synthesis in vitro, mutagenicity of the C8-aryl-dG adducts was assayed with representative high-fidelity replicative versus lesion bypass Y-family DNA polymerases, namely, Escherichia coli pol I Klenow fragment exo(−) (Kf(−)) and Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4). Our experiments provide a basis for a model involving a two-base slippage and subsequent realignment process to relate the miscoding properties of C-linked C8-aryl-dG adducts with their chemical structures.