Cargando…
DEPDC1B Coordinates De-adhesion Events and Cell-Cycle Progression at Mitosis
Cells entering mitosis become rounded, lose attachment to the substrate, and increase their cortical rigidity. Pivotal to these events is the dismantling of focal adhesions (FAs). How mitotic reshaping is linked to commitment to divide is unclear. Here, we show that DEPDC1B, a protein that accumulat...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4250264/ https://www.ncbi.nlm.nih.gov/pubmed/25458010 http://dx.doi.org/10.1016/j.devcel.2014.09.009 |
_version_ | 1782346957489963008 |
---|---|
author | Marchesi, Stefano Montani, Francesca Deflorian, Gianluca D’Antuono, Rocco Cuomo, Alessandro Bologna, Serena Mazzoccoli, Carmela Bonaldi, Tiziana Di Fiore, Pier Paolo Nicassio, Francesco |
author_facet | Marchesi, Stefano Montani, Francesca Deflorian, Gianluca D’Antuono, Rocco Cuomo, Alessandro Bologna, Serena Mazzoccoli, Carmela Bonaldi, Tiziana Di Fiore, Pier Paolo Nicassio, Francesco |
author_sort | Marchesi, Stefano |
collection | PubMed |
description | Cells entering mitosis become rounded, lose attachment to the substrate, and increase their cortical rigidity. Pivotal to these events is the dismantling of focal adhesions (FAs). How mitotic reshaping is linked to commitment to divide is unclear. Here, we show that DEPDC1B, a protein that accumulates in G2, coordinates de-adhesion events and cell-cycle progression at mitosis. DEPDC1B functions as an inhibitor of a RhoA-based signaling complex, which assembles on the FA-associated protein tyrosine phosphatase, receptor type, F (PTPRF) and mediates the integrity of FAs. By competing with RhoA for the interaction with PTPRF, DEPDC1B promotes the dismantling of FAs, which is necessary for the morphological changes preceding mitosis. The circuitry is relevant in whole organisms, as shown by the control exerted by the DEPDC1B/RhoA/PTPRF axis on mitotic dynamics during zebrafish development. Our results uncover an adhesion-dependent signaling mechanism that coordinates adhesion events with the control of cell-cycle progression. |
format | Online Article Text |
id | pubmed-4250264 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-42502642014-12-03 DEPDC1B Coordinates De-adhesion Events and Cell-Cycle Progression at Mitosis Marchesi, Stefano Montani, Francesca Deflorian, Gianluca D’Antuono, Rocco Cuomo, Alessandro Bologna, Serena Mazzoccoli, Carmela Bonaldi, Tiziana Di Fiore, Pier Paolo Nicassio, Francesco Dev Cell Article Cells entering mitosis become rounded, lose attachment to the substrate, and increase their cortical rigidity. Pivotal to these events is the dismantling of focal adhesions (FAs). How mitotic reshaping is linked to commitment to divide is unclear. Here, we show that DEPDC1B, a protein that accumulates in G2, coordinates de-adhesion events and cell-cycle progression at mitosis. DEPDC1B functions as an inhibitor of a RhoA-based signaling complex, which assembles on the FA-associated protein tyrosine phosphatase, receptor type, F (PTPRF) and mediates the integrity of FAs. By competing with RhoA for the interaction with PTPRF, DEPDC1B promotes the dismantling of FAs, which is necessary for the morphological changes preceding mitosis. The circuitry is relevant in whole organisms, as shown by the control exerted by the DEPDC1B/RhoA/PTPRF axis on mitotic dynamics during zebrafish development. Our results uncover an adhesion-dependent signaling mechanism that coordinates adhesion events with the control of cell-cycle progression. Cell Press 2014-11-24 /pmc/articles/PMC4250264/ /pubmed/25458010 http://dx.doi.org/10.1016/j.devcel.2014.09.009 Text en © 2014 The Authors http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). |
spellingShingle | Article Marchesi, Stefano Montani, Francesca Deflorian, Gianluca D’Antuono, Rocco Cuomo, Alessandro Bologna, Serena Mazzoccoli, Carmela Bonaldi, Tiziana Di Fiore, Pier Paolo Nicassio, Francesco DEPDC1B Coordinates De-adhesion Events and Cell-Cycle Progression at Mitosis |
title | DEPDC1B Coordinates De-adhesion Events and Cell-Cycle Progression at Mitosis |
title_full | DEPDC1B Coordinates De-adhesion Events and Cell-Cycle Progression at Mitosis |
title_fullStr | DEPDC1B Coordinates De-adhesion Events and Cell-Cycle Progression at Mitosis |
title_full_unstemmed | DEPDC1B Coordinates De-adhesion Events and Cell-Cycle Progression at Mitosis |
title_short | DEPDC1B Coordinates De-adhesion Events and Cell-Cycle Progression at Mitosis |
title_sort | depdc1b coordinates de-adhesion events and cell-cycle progression at mitosis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4250264/ https://www.ncbi.nlm.nih.gov/pubmed/25458010 http://dx.doi.org/10.1016/j.devcel.2014.09.009 |
work_keys_str_mv | AT marchesistefano depdc1bcoordinatesdeadhesioneventsandcellcycleprogressionatmitosis AT montanifrancesca depdc1bcoordinatesdeadhesioneventsandcellcycleprogressionatmitosis AT defloriangianluca depdc1bcoordinatesdeadhesioneventsandcellcycleprogressionatmitosis AT dantuonorocco depdc1bcoordinatesdeadhesioneventsandcellcycleprogressionatmitosis AT cuomoalessandro depdc1bcoordinatesdeadhesioneventsandcellcycleprogressionatmitosis AT bolognaserena depdc1bcoordinatesdeadhesioneventsandcellcycleprogressionatmitosis AT mazzoccolicarmela depdc1bcoordinatesdeadhesioneventsandcellcycleprogressionatmitosis AT bonalditiziana depdc1bcoordinatesdeadhesioneventsandcellcycleprogressionatmitosis AT difiorepierpaolo depdc1bcoordinatesdeadhesioneventsandcellcycleprogressionatmitosis AT nicassiofrancesco depdc1bcoordinatesdeadhesioneventsandcellcycleprogressionatmitosis |