Cargando…

Significant distinct branches of hierarchical trees: a framework for statistical analysis and applications to biological data

BACKGROUND: One of the most common goals of hierarchical clustering is finding those branches of a tree that form quantifiably distinct data subtypes. Achieving this goal in a statistically meaningful way requires (a) a measure of distinctness of a branch and (b) a test to determine the significance...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Guoli, Krasnitz, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4253613/
https://www.ncbi.nlm.nih.gov/pubmed/25409689
http://dx.doi.org/10.1186/1471-2164-15-1000
Descripción
Sumario:BACKGROUND: One of the most common goals of hierarchical clustering is finding those branches of a tree that form quantifiably distinct data subtypes. Achieving this goal in a statistically meaningful way requires (a) a measure of distinctness of a branch and (b) a test to determine the significance of the observed measure, applicable to all branches and across multiple scales of dissimilarity. RESULTS: We formulate a method termed Tree Branches Evaluated Statistically for Tightness (TBEST) for identifying significantly distinct tree branches in hierarchical clusters. For each branch of the tree a measure of distinctness, or tightness, is defined as a rational function of heights, both of the branch and of its parent. A statistical procedure is then developed to determine the significance of the observed values of tightness. We test TBEST as a tool for tree-based data partitioning by applying it to five benchmark datasets, one of them synthetic and the other four each from a different area of biology. For each dataset there is a well-defined partition of the data into classes. In all test cases TBEST performs on par with or better than the existing techniques. CONCLUSIONS: Based on our benchmark analysis, TBEST is a tool of choice for detection of significantly distinct branches in hierarchical trees grown from biological data. An R language implementation of the method is available from the Comprehensive R Archive Network: http://www.cran.r-project.org/web/packages/TBEST/index.html. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-1000) contains supplementary material, which is available to authorized users.