Cargando…

1,4-Disubstituted-[1,2,3]triazolyl-Containing Analogues of MT-II: Design, Synthesis, Conformational Analysis, and Biological Activity

[Image: see text] Side chain-to-side chain cyclizations represent a strategy to select a family of bioactive conformations by reducing the entropy and enhancing the stabilization of functional ligand-induced receptor conformations. This structural manipulation contributes to increased target specifi...

Descripción completa

Detalles Bibliográficos
Autores principales: Testa, Chiara, Scrima, Mario, Grimaldi, Manuela, D’Ursi, Anna M., Dirain, Marvin L., Lubin-Germain, Nadège, Singh, Anamika, Haskell-Luevano, Carrie, Chorev, Michael, Rovero, Paolo, Papini, Anna M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2014
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255721/
https://www.ncbi.nlm.nih.gov/pubmed/25347033
http://dx.doi.org/10.1021/jm501027w
_version_ 1782347476687126528
author Testa, Chiara
Scrima, Mario
Grimaldi, Manuela
D’Ursi, Anna M.
Dirain, Marvin L.
Lubin-Germain, Nadège
Singh, Anamika
Haskell-Luevano, Carrie
Chorev, Michael
Rovero, Paolo
Papini, Anna M.
author_facet Testa, Chiara
Scrima, Mario
Grimaldi, Manuela
D’Ursi, Anna M.
Dirain, Marvin L.
Lubin-Germain, Nadège
Singh, Anamika
Haskell-Luevano, Carrie
Chorev, Michael
Rovero, Paolo
Papini, Anna M.
author_sort Testa, Chiara
collection PubMed
description [Image: see text] Side chain-to-side chain cyclizations represent a strategy to select a family of bioactive conformations by reducing the entropy and enhancing the stabilization of functional ligand-induced receptor conformations. This structural manipulation contributes to increased target specificity, enhanced biological potency, improved pharmacokinetic properties, increased functional potency, and lowered metabolic susceptibility. The Cu(I)-catalyzed azide–alkyne 1,3-dipolar Huisgen’s cycloaddition, the prototypic click reaction, presents a promising opportunity to develop a new paradigm for an orthogonal bioorganic and intramolecular side chain-to-side chain cyclization. In fact, the proteolytic stable 1,4- or 4,1-disubstituted [1,2,3]triazolyl moiety is isosteric with the peptide bond and can function as a surrogate of the classical side chain-to-side chain lactam forming bridge. Herein we report the design, synthesis, conformational analysis, and functional biological activity of a series of i-to-i+5 1,4- and 4,1-disubstituted [1,2,3]triazole-bridged cyclopeptides derived from MT-II, the homodetic Asp(5) to Lys(10) side chain-to-side chain bridged heptapeptide, an extensively studied agonist of melanocortin receptors.
format Online
Article
Text
id pubmed-4255721
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-42557212015-10-27 1,4-Disubstituted-[1,2,3]triazolyl-Containing Analogues of MT-II: Design, Synthesis, Conformational Analysis, and Biological Activity Testa, Chiara Scrima, Mario Grimaldi, Manuela D’Ursi, Anna M. Dirain, Marvin L. Lubin-Germain, Nadège Singh, Anamika Haskell-Luevano, Carrie Chorev, Michael Rovero, Paolo Papini, Anna M. J Med Chem [Image: see text] Side chain-to-side chain cyclizations represent a strategy to select a family of bioactive conformations by reducing the entropy and enhancing the stabilization of functional ligand-induced receptor conformations. This structural manipulation contributes to increased target specificity, enhanced biological potency, improved pharmacokinetic properties, increased functional potency, and lowered metabolic susceptibility. The Cu(I)-catalyzed azide–alkyne 1,3-dipolar Huisgen’s cycloaddition, the prototypic click reaction, presents a promising opportunity to develop a new paradigm for an orthogonal bioorganic and intramolecular side chain-to-side chain cyclization. In fact, the proteolytic stable 1,4- or 4,1-disubstituted [1,2,3]triazolyl moiety is isosteric with the peptide bond and can function as a surrogate of the classical side chain-to-side chain lactam forming bridge. Herein we report the design, synthesis, conformational analysis, and functional biological activity of a series of i-to-i+5 1,4- and 4,1-disubstituted [1,2,3]triazole-bridged cyclopeptides derived from MT-II, the homodetic Asp(5) to Lys(10) side chain-to-side chain bridged heptapeptide, an extensively studied agonist of melanocortin receptors. American Chemical Society 2014-10-27 2014-11-26 /pmc/articles/PMC4255721/ /pubmed/25347033 http://dx.doi.org/10.1021/jm501027w Text en Copyright © 2014 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Testa, Chiara
Scrima, Mario
Grimaldi, Manuela
D’Ursi, Anna M.
Dirain, Marvin L.
Lubin-Germain, Nadège
Singh, Anamika
Haskell-Luevano, Carrie
Chorev, Michael
Rovero, Paolo
Papini, Anna M.
1,4-Disubstituted-[1,2,3]triazolyl-Containing Analogues of MT-II: Design, Synthesis, Conformational Analysis, and Biological Activity
title 1,4-Disubstituted-[1,2,3]triazolyl-Containing Analogues of MT-II: Design, Synthesis, Conformational Analysis, and Biological Activity
title_full 1,4-Disubstituted-[1,2,3]triazolyl-Containing Analogues of MT-II: Design, Synthesis, Conformational Analysis, and Biological Activity
title_fullStr 1,4-Disubstituted-[1,2,3]triazolyl-Containing Analogues of MT-II: Design, Synthesis, Conformational Analysis, and Biological Activity
title_full_unstemmed 1,4-Disubstituted-[1,2,3]triazolyl-Containing Analogues of MT-II: Design, Synthesis, Conformational Analysis, and Biological Activity
title_short 1,4-Disubstituted-[1,2,3]triazolyl-Containing Analogues of MT-II: Design, Synthesis, Conformational Analysis, and Biological Activity
title_sort 1,4-disubstituted-[1,2,3]triazolyl-containing analogues of mt-ii: design, synthesis, conformational analysis, and biological activity
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255721/
https://www.ncbi.nlm.nih.gov/pubmed/25347033
http://dx.doi.org/10.1021/jm501027w
work_keys_str_mv AT testachiara 14disubstituted123triazolylcontaininganaloguesofmtiidesignsynthesisconformationalanalysisandbiologicalactivity
AT scrimamario 14disubstituted123triazolylcontaininganaloguesofmtiidesignsynthesisconformationalanalysisandbiologicalactivity
AT grimaldimanuela 14disubstituted123triazolylcontaininganaloguesofmtiidesignsynthesisconformationalanalysisandbiologicalactivity
AT dursiannam 14disubstituted123triazolylcontaininganaloguesofmtiidesignsynthesisconformationalanalysisandbiologicalactivity
AT dirainmarvinl 14disubstituted123triazolylcontaininganaloguesofmtiidesignsynthesisconformationalanalysisandbiologicalactivity
AT lubingermainnadege 14disubstituted123triazolylcontaininganaloguesofmtiidesignsynthesisconformationalanalysisandbiologicalactivity
AT singhanamika 14disubstituted123triazolylcontaininganaloguesofmtiidesignsynthesisconformationalanalysisandbiologicalactivity
AT haskellluevanocarrie 14disubstituted123triazolylcontaininganaloguesofmtiidesignsynthesisconformationalanalysisandbiologicalactivity
AT chorevmichael 14disubstituted123triazolylcontaininganaloguesofmtiidesignsynthesisconformationalanalysisandbiologicalactivity
AT roveropaolo 14disubstituted123triazolylcontaininganaloguesofmtiidesignsynthesisconformationalanalysisandbiologicalactivity
AT papiniannam 14disubstituted123triazolylcontaininganaloguesofmtiidesignsynthesisconformationalanalysisandbiologicalactivity