Cargando…
Microevolution of Candida albicans in Macrophages Restores Filamentation in a Nonfilamentous Mutant
Following antifungal treatment, Candida albicans, and other human pathogenic fungi can undergo microevolution, which leads to the emergence of drug resistance. However, the capacity for microevolutionary adaptation of fungi goes beyond the development of resistance against antifungals. Here we used...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256171/ https://www.ncbi.nlm.nih.gov/pubmed/25474009 http://dx.doi.org/10.1371/journal.pgen.1004824 |
_version_ | 1782347540479344640 |
---|---|
author | Wartenberg, Anja Linde, Jörg Martin, Ronny Schreiner, Maria Horn, Fabian Jacobsen, Ilse D. Jenull, Sabrina Wolf, Thomas Kuchler, Karl Guthke, Reinhard Kurzai, Oliver Forche, Anja d'Enfert, Christophe Brunke, Sascha Hube, Bernhard |
author_facet | Wartenberg, Anja Linde, Jörg Martin, Ronny Schreiner, Maria Horn, Fabian Jacobsen, Ilse D. Jenull, Sabrina Wolf, Thomas Kuchler, Karl Guthke, Reinhard Kurzai, Oliver Forche, Anja d'Enfert, Christophe Brunke, Sascha Hube, Bernhard |
author_sort | Wartenberg, Anja |
collection | PubMed |
description | Following antifungal treatment, Candida albicans, and other human pathogenic fungi can undergo microevolution, which leads to the emergence of drug resistance. However, the capacity for microevolutionary adaptation of fungi goes beyond the development of resistance against antifungals. Here we used an experimental microevolution approach to show that one of the central pathogenicity mechanisms of C. albicans, the yeast-to-hyphae transition, can be subject to experimental evolution. The C. albicans cph1Δ/efg1Δ mutant is nonfilamentous, as central signaling pathways linking environmental cues to hyphal formation are disrupted. We subjected this mutant to constant selection pressure in the hostile environment of the macrophage phagosome. In a comparatively short time-frame, the mutant evolved the ability to escape macrophages by filamentation. In addition, the evolved mutant exhibited hyper-virulence in a murine infection model and an altered cell wall composition compared to the cph1Δ/efg1Δ strain. Moreover, the transcriptional regulation of hyphae-associated, and other pathogenicity-related genes became re-responsive to environmental cues in the evolved strain. We went on to identify the causative missense mutation via whole genome- and transcriptome-sequencing: a single nucleotide exchange took place within SSN3 that encodes a component of the Cdk8 module of the Mediator complex, which links transcription factors with the general transcription machinery. This mutation was responsible for the reconnection of the hyphal growth program with environmental signals in the evolved strain and was sufficient to bypass Efg1/Cph1-dependent filamentation. These data demonstrate that even central transcriptional networks can be remodeled very quickly under appropriate selection pressure. |
format | Online Article Text |
id | pubmed-4256171 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-42561712014-12-11 Microevolution of Candida albicans in Macrophages Restores Filamentation in a Nonfilamentous Mutant Wartenberg, Anja Linde, Jörg Martin, Ronny Schreiner, Maria Horn, Fabian Jacobsen, Ilse D. Jenull, Sabrina Wolf, Thomas Kuchler, Karl Guthke, Reinhard Kurzai, Oliver Forche, Anja d'Enfert, Christophe Brunke, Sascha Hube, Bernhard PLoS Genet Research Article Following antifungal treatment, Candida albicans, and other human pathogenic fungi can undergo microevolution, which leads to the emergence of drug resistance. However, the capacity for microevolutionary adaptation of fungi goes beyond the development of resistance against antifungals. Here we used an experimental microevolution approach to show that one of the central pathogenicity mechanisms of C. albicans, the yeast-to-hyphae transition, can be subject to experimental evolution. The C. albicans cph1Δ/efg1Δ mutant is nonfilamentous, as central signaling pathways linking environmental cues to hyphal formation are disrupted. We subjected this mutant to constant selection pressure in the hostile environment of the macrophage phagosome. In a comparatively short time-frame, the mutant evolved the ability to escape macrophages by filamentation. In addition, the evolved mutant exhibited hyper-virulence in a murine infection model and an altered cell wall composition compared to the cph1Δ/efg1Δ strain. Moreover, the transcriptional regulation of hyphae-associated, and other pathogenicity-related genes became re-responsive to environmental cues in the evolved strain. We went on to identify the causative missense mutation via whole genome- and transcriptome-sequencing: a single nucleotide exchange took place within SSN3 that encodes a component of the Cdk8 module of the Mediator complex, which links transcription factors with the general transcription machinery. This mutation was responsible for the reconnection of the hyphal growth program with environmental signals in the evolved strain and was sufficient to bypass Efg1/Cph1-dependent filamentation. These data demonstrate that even central transcriptional networks can be remodeled very quickly under appropriate selection pressure. Public Library of Science 2014-12-04 /pmc/articles/PMC4256171/ /pubmed/25474009 http://dx.doi.org/10.1371/journal.pgen.1004824 Text en © 2014 Wartenberg et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Wartenberg, Anja Linde, Jörg Martin, Ronny Schreiner, Maria Horn, Fabian Jacobsen, Ilse D. Jenull, Sabrina Wolf, Thomas Kuchler, Karl Guthke, Reinhard Kurzai, Oliver Forche, Anja d'Enfert, Christophe Brunke, Sascha Hube, Bernhard Microevolution of Candida albicans in Macrophages Restores Filamentation in a Nonfilamentous Mutant |
title | Microevolution of Candida albicans in Macrophages Restores Filamentation in a Nonfilamentous Mutant |
title_full | Microevolution of Candida albicans in Macrophages Restores Filamentation in a Nonfilamentous Mutant |
title_fullStr | Microevolution of Candida albicans in Macrophages Restores Filamentation in a Nonfilamentous Mutant |
title_full_unstemmed | Microevolution of Candida albicans in Macrophages Restores Filamentation in a Nonfilamentous Mutant |
title_short | Microevolution of Candida albicans in Macrophages Restores Filamentation in a Nonfilamentous Mutant |
title_sort | microevolution of candida albicans in macrophages restores filamentation in a nonfilamentous mutant |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256171/ https://www.ncbi.nlm.nih.gov/pubmed/25474009 http://dx.doi.org/10.1371/journal.pgen.1004824 |
work_keys_str_mv | AT wartenberganja microevolutionofcandidaalbicansinmacrophagesrestoresfilamentationinanonfilamentousmutant AT lindejorg microevolutionofcandidaalbicansinmacrophagesrestoresfilamentationinanonfilamentousmutant AT martinronny microevolutionofcandidaalbicansinmacrophagesrestoresfilamentationinanonfilamentousmutant AT schreinermaria microevolutionofcandidaalbicansinmacrophagesrestoresfilamentationinanonfilamentousmutant AT hornfabian microevolutionofcandidaalbicansinmacrophagesrestoresfilamentationinanonfilamentousmutant AT jacobsenilsed microevolutionofcandidaalbicansinmacrophagesrestoresfilamentationinanonfilamentousmutant AT jenullsabrina microevolutionofcandidaalbicansinmacrophagesrestoresfilamentationinanonfilamentousmutant AT wolfthomas microevolutionofcandidaalbicansinmacrophagesrestoresfilamentationinanonfilamentousmutant AT kuchlerkarl microevolutionofcandidaalbicansinmacrophagesrestoresfilamentationinanonfilamentousmutant AT guthkereinhard microevolutionofcandidaalbicansinmacrophagesrestoresfilamentationinanonfilamentousmutant AT kurzaioliver microevolutionofcandidaalbicansinmacrophagesrestoresfilamentationinanonfilamentousmutant AT forcheanja microevolutionofcandidaalbicansinmacrophagesrestoresfilamentationinanonfilamentousmutant AT denfertchristophe microevolutionofcandidaalbicansinmacrophagesrestoresfilamentationinanonfilamentousmutant AT brunkesascha microevolutionofcandidaalbicansinmacrophagesrestoresfilamentationinanonfilamentousmutant AT hubebernhard microevolutionofcandidaalbicansinmacrophagesrestoresfilamentationinanonfilamentousmutant |