Cargando…

Ischemia and Reperfusion Induce Differential Expression of Calpastatin and Its Homologue High Molecular Weight Calmodulin-Binding Protein in Murine Cardiomyocytes

In the heart, calpastatin (Calp) and its homologue high molecular weight calmodulin-binding protein (HMWCaMBP) regulate calpains (Calpn) by inhibition. A rise in intracellular myocardial Ca(2+) during cardiac ischemia activates Calpn thereby causing damage to myocardial proteins, which leads to myoc...

Descripción completa

Detalles Bibliográficos
Autores principales: Parameswaran, Sreejit, Sharma, Rajendra K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259361/
https://www.ncbi.nlm.nih.gov/pubmed/25486053
http://dx.doi.org/10.1371/journal.pone.0114653
_version_ 1782347998778359808
author Parameswaran, Sreejit
Sharma, Rajendra K.
author_facet Parameswaran, Sreejit
Sharma, Rajendra K.
author_sort Parameswaran, Sreejit
collection PubMed
description In the heart, calpastatin (Calp) and its homologue high molecular weight calmodulin-binding protein (HMWCaMBP) regulate calpains (Calpn) by inhibition. A rise in intracellular myocardial Ca(2+) during cardiac ischemia activates Calpn thereby causing damage to myocardial proteins, which leads to myocyte death and consequently to loss of myocardial structure and function. The present study aims to elucidate expression of Calp and HMWCaMBP with respect to Calpn during induced ischemia and reperfusion in primary murine cardiomyocyte cultures. Ischemia and subsequently reperfusion was induced in ∼80% confluent cultures of neonatal murine cardiomyocytes (NMCC). Flow cytometric analysis (FACS) has been used for analyzing protein expression concurrently with viability. Confocal fluorescent microscopy was used to observe protein localization. We observed that ischemia induces increased expression of Calp, HMWCaMBP and Calpn. Calpn expressing NMCC on co-expressing Calp survived ischemic induction compared to NMCC co-expressing HMWCaMBP. Similarly, living cells expressed Calp in contrast to dead cells which expressed HMWCaMBP following reperfusion. A significant difference in the expression of Calp and its homologue HMWCaMBP was observed in localization studies during ischemia. The current study adds to the existing knowledge that HMWCaMBP could be a putative isoform of Calp. NMCC on co-expressing Calp and Calpn-1 survived ischemic and reperfusion inductions compared to NMCC co-expressing HMWCaMBP and Calpn-1. A significant difference in expression of Calp and HMWCaMBP was observed in localization studies during ischemia.
format Online
Article
Text
id pubmed-4259361
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-42593612014-12-15 Ischemia and Reperfusion Induce Differential Expression of Calpastatin and Its Homologue High Molecular Weight Calmodulin-Binding Protein in Murine Cardiomyocytes Parameswaran, Sreejit Sharma, Rajendra K. PLoS One Research Article In the heart, calpastatin (Calp) and its homologue high molecular weight calmodulin-binding protein (HMWCaMBP) regulate calpains (Calpn) by inhibition. A rise in intracellular myocardial Ca(2+) during cardiac ischemia activates Calpn thereby causing damage to myocardial proteins, which leads to myocyte death and consequently to loss of myocardial structure and function. The present study aims to elucidate expression of Calp and HMWCaMBP with respect to Calpn during induced ischemia and reperfusion in primary murine cardiomyocyte cultures. Ischemia and subsequently reperfusion was induced in ∼80% confluent cultures of neonatal murine cardiomyocytes (NMCC). Flow cytometric analysis (FACS) has been used for analyzing protein expression concurrently with viability. Confocal fluorescent microscopy was used to observe protein localization. We observed that ischemia induces increased expression of Calp, HMWCaMBP and Calpn. Calpn expressing NMCC on co-expressing Calp survived ischemic induction compared to NMCC co-expressing HMWCaMBP. Similarly, living cells expressed Calp in contrast to dead cells which expressed HMWCaMBP following reperfusion. A significant difference in the expression of Calp and its homologue HMWCaMBP was observed in localization studies during ischemia. The current study adds to the existing knowledge that HMWCaMBP could be a putative isoform of Calp. NMCC on co-expressing Calp and Calpn-1 survived ischemic and reperfusion inductions compared to NMCC co-expressing HMWCaMBP and Calpn-1. A significant difference in expression of Calp and HMWCaMBP was observed in localization studies during ischemia. Public Library of Science 2014-12-08 /pmc/articles/PMC4259361/ /pubmed/25486053 http://dx.doi.org/10.1371/journal.pone.0114653 Text en © 2014 Parameswaran, Sharma http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Parameswaran, Sreejit
Sharma, Rajendra K.
Ischemia and Reperfusion Induce Differential Expression of Calpastatin and Its Homologue High Molecular Weight Calmodulin-Binding Protein in Murine Cardiomyocytes
title Ischemia and Reperfusion Induce Differential Expression of Calpastatin and Its Homologue High Molecular Weight Calmodulin-Binding Protein in Murine Cardiomyocytes
title_full Ischemia and Reperfusion Induce Differential Expression of Calpastatin and Its Homologue High Molecular Weight Calmodulin-Binding Protein in Murine Cardiomyocytes
title_fullStr Ischemia and Reperfusion Induce Differential Expression of Calpastatin and Its Homologue High Molecular Weight Calmodulin-Binding Protein in Murine Cardiomyocytes
title_full_unstemmed Ischemia and Reperfusion Induce Differential Expression of Calpastatin and Its Homologue High Molecular Weight Calmodulin-Binding Protein in Murine Cardiomyocytes
title_short Ischemia and Reperfusion Induce Differential Expression of Calpastatin and Its Homologue High Molecular Weight Calmodulin-Binding Protein in Murine Cardiomyocytes
title_sort ischemia and reperfusion induce differential expression of calpastatin and its homologue high molecular weight calmodulin-binding protein in murine cardiomyocytes
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259361/
https://www.ncbi.nlm.nih.gov/pubmed/25486053
http://dx.doi.org/10.1371/journal.pone.0114653
work_keys_str_mv AT parameswaransreejit ischemiaandreperfusioninducedifferentialexpressionofcalpastatinanditshomologuehighmolecularweightcalmodulinbindingproteininmurinecardiomyocytes
AT sharmarajendrak ischemiaandreperfusioninducedifferentialexpressionofcalpastatinanditshomologuehighmolecularweightcalmodulinbindingproteininmurinecardiomyocytes