Cargando…

Automated image-based assay for evaluation of HIV neutralization and cell-to-cell fusion inhibition

BACKGROUND: Standardized techniques to detect HIV-neutralizing antibody responses are of great importance in the search for an HIV vaccine. METHODS: Here, we present a high-throughput, high-content automated plaque reduction (APR) assay based on automated microscopy and image analysis that allows ev...

Descripción completa

Detalles Bibliográficos
Autores principales: Sheik-Khalil, Enas, Bray, Mark-Anthony, Özkaya Şahin, Gülsen, Scarlatti, Gabriella, Jansson, Marianne, Carpenter, Anne E, Fenyö, Eva Maria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4261578/
https://www.ncbi.nlm.nih.gov/pubmed/25176034
http://dx.doi.org/10.1186/1471-2334-14-472
Descripción
Sumario:BACKGROUND: Standardized techniques to detect HIV-neutralizing antibody responses are of great importance in the search for an HIV vaccine. METHODS: Here, we present a high-throughput, high-content automated plaque reduction (APR) assay based on automated microscopy and image analysis that allows evaluation of neutralization and inhibition of cell-cell fusion within the same assay. Neutralization of virus particles is measured as a reduction in the number of fluorescent plaques, and inhibition of cell-cell fusion as a reduction in plaque area. RESULTS: We found neutralization strength to be a significant factor in the ability of virus to form syncytia. Further, we introduce the inhibitory concentration of plaque area reduction (ICpar) as an additional measure of antiviral activity, i.e. fusion inhibition. CONCLUSIONS: We present an automated image based high-throughput, high-content HIV plaque reduction assay. This allows, for the first time, simultaneous evaluation of neutralization and inhibition of cell-cell fusion within the same assay, by quantifying the reduction in number of plaques and mean plaque area, respectively. Inhibition of cell-to-cell fusion requires higher quantities of inhibitory reagent than inhibition of virus neutralization. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2334-14-472) contains supplementary material, which is available to authorized users.