Cargando…
Direct Lineage Conversion of Adult Mouse Liver Cells and B Lymphocytes to Neural Stem Cells
Overexpression of transcription factors has been used to directly reprogram somatic cells into a range of other differentiated cell types, including multipotent neural stem cells (NSCs), that can be used to generate neurons and glia. However, the ability to maintain the NSC state independent of the...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4264067/ https://www.ncbi.nlm.nih.gov/pubmed/25454632 http://dx.doi.org/10.1016/j.stemcr.2014.10.001 |
_version_ | 1782348661370388480 |
---|---|
author | Cassady, John P. D’Alessio, Ana C. Sarkar, Sovan Dani, Vardhan S. Fan, Zi Peng Ganz, Kibibi Roessler, Reinhard Sur, Mriganka Young, Richard A. Jaenisch, Rudolf |
author_facet | Cassady, John P. D’Alessio, Ana C. Sarkar, Sovan Dani, Vardhan S. Fan, Zi Peng Ganz, Kibibi Roessler, Reinhard Sur, Mriganka Young, Richard A. Jaenisch, Rudolf |
author_sort | Cassady, John P. |
collection | PubMed |
description | Overexpression of transcription factors has been used to directly reprogram somatic cells into a range of other differentiated cell types, including multipotent neural stem cells (NSCs), that can be used to generate neurons and glia. However, the ability to maintain the NSC state independent of the inducing factors and the identity of the somatic donor cells remain two important unresolved issues in transdifferentiation. Here we used transduction of doxycycline-inducible transcription factors to generate stable tripotent NSCs. The induced NSCs (iNSCs) maintained their characteristics in the absence of exogenous factor expression and were transcriptionally, epigenetically, and functionally similar to primary brain-derived NSCs. Importantly, we also generated tripotent iNSCs from multiple adult cell types, including mature liver and B cells. Our results show that self-maintaining proliferative neural cells can be induced from nonectodermal cells by expressing specific combinations of transcription factors. |
format | Online Article Text |
id | pubmed-4264067 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-42640672014-12-13 Direct Lineage Conversion of Adult Mouse Liver Cells and B Lymphocytes to Neural Stem Cells Cassady, John P. D’Alessio, Ana C. Sarkar, Sovan Dani, Vardhan S. Fan, Zi Peng Ganz, Kibibi Roessler, Reinhard Sur, Mriganka Young, Richard A. Jaenisch, Rudolf Stem Cell Reports Report Overexpression of transcription factors has been used to directly reprogram somatic cells into a range of other differentiated cell types, including multipotent neural stem cells (NSCs), that can be used to generate neurons and glia. However, the ability to maintain the NSC state independent of the inducing factors and the identity of the somatic donor cells remain two important unresolved issues in transdifferentiation. Here we used transduction of doxycycline-inducible transcription factors to generate stable tripotent NSCs. The induced NSCs (iNSCs) maintained their characteristics in the absence of exogenous factor expression and were transcriptionally, epigenetically, and functionally similar to primary brain-derived NSCs. Importantly, we also generated tripotent iNSCs from multiple adult cell types, including mature liver and B cells. Our results show that self-maintaining proliferative neural cells can be induced from nonectodermal cells by expressing specific combinations of transcription factors. Elsevier 2014-11-06 /pmc/articles/PMC4264067/ /pubmed/25454632 http://dx.doi.org/10.1016/j.stemcr.2014.10.001 Text en © 2014 The Authors http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). |
spellingShingle | Report Cassady, John P. D’Alessio, Ana C. Sarkar, Sovan Dani, Vardhan S. Fan, Zi Peng Ganz, Kibibi Roessler, Reinhard Sur, Mriganka Young, Richard A. Jaenisch, Rudolf Direct Lineage Conversion of Adult Mouse Liver Cells and B Lymphocytes to Neural Stem Cells |
title | Direct Lineage Conversion of Adult Mouse Liver Cells and B Lymphocytes to Neural Stem Cells |
title_full | Direct Lineage Conversion of Adult Mouse Liver Cells and B Lymphocytes to Neural Stem Cells |
title_fullStr | Direct Lineage Conversion of Adult Mouse Liver Cells and B Lymphocytes to Neural Stem Cells |
title_full_unstemmed | Direct Lineage Conversion of Adult Mouse Liver Cells and B Lymphocytes to Neural Stem Cells |
title_short | Direct Lineage Conversion of Adult Mouse Liver Cells and B Lymphocytes to Neural Stem Cells |
title_sort | direct lineage conversion of adult mouse liver cells and b lymphocytes to neural stem cells |
topic | Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4264067/ https://www.ncbi.nlm.nih.gov/pubmed/25454632 http://dx.doi.org/10.1016/j.stemcr.2014.10.001 |
work_keys_str_mv | AT cassadyjohnp directlineageconversionofadultmouselivercellsandblymphocytestoneuralstemcells AT dalessioanac directlineageconversionofadultmouselivercellsandblymphocytestoneuralstemcells AT sarkarsovan directlineageconversionofadultmouselivercellsandblymphocytestoneuralstemcells AT danivardhans directlineageconversionofadultmouselivercellsandblymphocytestoneuralstemcells AT fanzipeng directlineageconversionofadultmouselivercellsandblymphocytestoneuralstemcells AT ganzkibibi directlineageconversionofadultmouselivercellsandblymphocytestoneuralstemcells AT roesslerreinhard directlineageconversionofadultmouselivercellsandblymphocytestoneuralstemcells AT surmriganka directlineageconversionofadultmouselivercellsandblymphocytestoneuralstemcells AT youngricharda directlineageconversionofadultmouselivercellsandblymphocytestoneuralstemcells AT jaenischrudolf directlineageconversionofadultmouselivercellsandblymphocytestoneuralstemcells |