Cargando…

Proof of dual-topology architecture of Fluc F(-) channels with monobody blockers

Fluc-type F(-) channels — used by microorganisms for resisting fluoride toxicity — are unusual in their quaternary architecture: They are thought to associate as dimers with the two subunits in antiparallel transmembrane orientation. Here we subject this unusual structural feature to a direct test....

Descripción completa

Detalles Bibliográficos
Autores principales: Stockbridge, Randy B., Koide, Akiko, Miller, Christopher, Koide, Shohei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4265568/
https://www.ncbi.nlm.nih.gov/pubmed/25290819
http://dx.doi.org/10.1038/ncomms6120
Descripción
Sumario:Fluc-type F(-) channels — used by microorganisms for resisting fluoride toxicity — are unusual in their quaternary architecture: They are thought to associate as dimers with the two subunits in antiparallel transmembrane orientation. Here we subject this unusual structural feature to a direct test. Single purified Fluc channels recorded in planar lipid bilayers are constitutively open, with rare, short-lived closings. Using combinatorial libraries, we generated synthetic binding proteins, “monobodies,” that specifically bind to Fluc homologues with nanomolar affinity. Reversible binding of monobodies to two different Fluc channel homologues is seen in single-channel recordings as long-lived nonconducting events that follow bimolecular kinetics. By applying monobodies sequentially to the two sides of the bilayer in a double-sided perfusion maneuver, we show that Fluc channels present monobody-binding epitopes to both sides of the membrane. The result establishes that Fluc subunits are arranged in dimeric antiparallel orientation.