Cargando…

The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells

The H19 lncRNA has been implicated in development and growth control and is associated with human genetic disorders and cancer. Acting as a molecular sponge, H19 inhibits microRNA (miRNA) let-7. Here we report that H19 is significantly decreased in muscle of human subjects with type-2 diabetes and i...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Yuan, Wu, Fuju, Zhou, Jichun, Yan, Lei, Jurczak, Michael J., Lee, Hui-Young, Yang, Lihua, Mueller, Martin, Zhou, Xiao-Bo, Dandolo, Luisa, Szendroedi, Julia, Roden, Michael, Flannery, Clare, Taylor, Hugh, Carmichael, Gordon G., Shulman, Gerald I., Huang, Yingqun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267628/
https://www.ncbi.nlm.nih.gov/pubmed/25399420
http://dx.doi.org/10.1093/nar/gku1160
_version_ 1782349171698696192
author Gao, Yuan
Wu, Fuju
Zhou, Jichun
Yan, Lei
Jurczak, Michael J.
Lee, Hui-Young
Yang, Lihua
Mueller, Martin
Zhou, Xiao-Bo
Dandolo, Luisa
Szendroedi, Julia
Roden, Michael
Flannery, Clare
Taylor, Hugh
Carmichael, Gordon G.
Shulman, Gerald I.
Huang, Yingqun
author_facet Gao, Yuan
Wu, Fuju
Zhou, Jichun
Yan, Lei
Jurczak, Michael J.
Lee, Hui-Young
Yang, Lihua
Mueller, Martin
Zhou, Xiao-Bo
Dandolo, Luisa
Szendroedi, Julia
Roden, Michael
Flannery, Clare
Taylor, Hugh
Carmichael, Gordon G.
Shulman, Gerald I.
Huang, Yingqun
author_sort Gao, Yuan
collection PubMed
description The H19 lncRNA has been implicated in development and growth control and is associated with human genetic disorders and cancer. Acting as a molecular sponge, H19 inhibits microRNA (miRNA) let-7. Here we report that H19 is significantly decreased in muscle of human subjects with type-2 diabetes and insulin resistant rodents. This decrease leads to increased bioavailability of let-7, causing diminished expression of let-7 targets, which is recapitulated in vitro where H19 depletion results in impaired insulin signaling and decreased glucose uptake. Furthermore, acute hyperinsulinemia downregulates H19, a phenomenon that occurs through PI3K/AKT-dependent phosphorylation of the miRNA processing factor KSRP, which promotes biogenesis of let-7 and its mediated H19 destabilization. Our results reveal a previously undescribed double-negative feedback loop between sponge lncRNA and target miRNA that contributes to glucose regulation in muscle cells.
format Online
Article
Text
id pubmed-4267628
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-42676282014-12-23 The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells Gao, Yuan Wu, Fuju Zhou, Jichun Yan, Lei Jurczak, Michael J. Lee, Hui-Young Yang, Lihua Mueller, Martin Zhou, Xiao-Bo Dandolo, Luisa Szendroedi, Julia Roden, Michael Flannery, Clare Taylor, Hugh Carmichael, Gordon G. Shulman, Gerald I. Huang, Yingqun Nucleic Acids Res Molecular Biology The H19 lncRNA has been implicated in development and growth control and is associated with human genetic disorders and cancer. Acting as a molecular sponge, H19 inhibits microRNA (miRNA) let-7. Here we report that H19 is significantly decreased in muscle of human subjects with type-2 diabetes and insulin resistant rodents. This decrease leads to increased bioavailability of let-7, causing diminished expression of let-7 targets, which is recapitulated in vitro where H19 depletion results in impaired insulin signaling and decreased glucose uptake. Furthermore, acute hyperinsulinemia downregulates H19, a phenomenon that occurs through PI3K/AKT-dependent phosphorylation of the miRNA processing factor KSRP, which promotes biogenesis of let-7 and its mediated H19 destabilization. Our results reveal a previously undescribed double-negative feedback loop between sponge lncRNA and target miRNA that contributes to glucose regulation in muscle cells. Oxford University Press 2014-12-16 2014-11-15 /pmc/articles/PMC4267628/ /pubmed/25399420 http://dx.doi.org/10.1093/nar/gku1160 Text en © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Molecular Biology
Gao, Yuan
Wu, Fuju
Zhou, Jichun
Yan, Lei
Jurczak, Michael J.
Lee, Hui-Young
Yang, Lihua
Mueller, Martin
Zhou, Xiao-Bo
Dandolo, Luisa
Szendroedi, Julia
Roden, Michael
Flannery, Clare
Taylor, Hugh
Carmichael, Gordon G.
Shulman, Gerald I.
Huang, Yingqun
The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells
title The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells
title_full The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells
title_fullStr The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells
title_full_unstemmed The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells
title_short The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells
title_sort h19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells
topic Molecular Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267628/
https://www.ncbi.nlm.nih.gov/pubmed/25399420
http://dx.doi.org/10.1093/nar/gku1160
work_keys_str_mv AT gaoyuan theh19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT wufuju theh19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT zhoujichun theh19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT yanlei theh19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT jurczakmichaelj theh19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT leehuiyoung theh19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT yanglihua theh19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT muellermartin theh19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT zhouxiaobo theh19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT dandololuisa theh19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT szendroedijulia theh19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT rodenmichael theh19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT flanneryclare theh19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT taylorhugh theh19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT carmichaelgordong theh19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT shulmangeraldi theh19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT huangyingqun theh19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT gaoyuan h19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT wufuju h19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT zhoujichun h19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT yanlei h19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT jurczakmichaelj h19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT leehuiyoung h19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT yanglihua h19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT muellermartin h19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT zhouxiaobo h19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT dandololuisa h19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT szendroedijulia h19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT rodenmichael h19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT flanneryclare h19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT taylorhugh h19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT carmichaelgordong h19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT shulmangeraldi h19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells
AT huangyingqun h19let7doublenegativefeedbackloopcontributestoglucosemetabolisminmusclecells