Cargando…

Thiocoraline activates the Notch pathway in carcinoids and reduces tumor progression in vivo

Carcinoids are slow-growing neuroendocrine tumors (NETs) that are characterized by hormone overproduction; surgery is currently the only option for treatment. Activation of the Notch pathway has previously been shown to have a role in tumor suppression in NETs. The marine-derived thiodepsipeptide th...

Descripción completa

Detalles Bibliográficos
Autores principales: Wyche, Thomas P., Dammalapati, Ajitha, Cho, Hyunah, Harrison, April D., Kwon, Glen S., Chen, Herbert, Bugni, Tim S., Jaskula-Sztul, Renata
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4270822/
https://www.ncbi.nlm.nih.gov/pubmed/25412645
http://dx.doi.org/10.1038/cgt.2014.57
Descripción
Sumario:Carcinoids are slow-growing neuroendocrine tumors (NETs) that are characterized by hormone overproduction; surgery is currently the only option for treatment. Activation of the Notch pathway has previously been shown to have a role in tumor suppression in NETs. The marine-derived thiodepsipeptide thiocoraline was investigated in vitro in two carcinoid cell lines (BON and H727). Carcinoid cells treated with nanomolar concentrations of thiocoraline resulted in a decrease in cell proliferation and an alteration of malignant phenotype evidenced by decrease of NET markers, ASCL-1, CgA, and NSE. Western blot analysis demonstrated the activation of Notch1 on the protein level in BON cells. Additionally, thiocoraline activated downstream Notch targets HES1, HES5, and HEY2. Thiocoraline effectively suppressed carcinoid cell growth by promoting cell cycle arrest in BON and H727 cells. An in vivo study demonstrated that thiocoraline, formulated with polymeric micelles, slowed carcinoid tumor progression. Thus, the therapeutic potential of thiocoraline, which induced activation of the Notch pathway, in carcinoid tumors was demonstrated.