Cargando…

mTORC2 Is Required for Rit-Mediated Oxidative Stress Resistance

Rit, a member of the Ras family of GTPases, has been shown to promote cell survival in response to oxidative stress, in part by directing an evolutionarily conserved p38 MAPK-Akt survival cascade. Aberrant Rit signaling has recently been implicated as a driver mutation in human cancer, adding import...

Descripción completa

Detalles Bibliográficos
Autores principales: Cai, Weikang, Andres, Douglas A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4274107/
https://www.ncbi.nlm.nih.gov/pubmed/25531880
http://dx.doi.org/10.1371/journal.pone.0115602
Descripción
Sumario:Rit, a member of the Ras family of GTPases, has been shown to promote cell survival in response to oxidative stress, in part by directing an evolutionarily conserved p38 MAPK-Akt survival cascade. Aberrant Rit signaling has recently been implicated as a driver mutation in human cancer, adding importance to the characterization of critical Rit effector pathways. However, the mechanism by which Rit-p38 signaling regulated Akt activity was unknown. Here, we identify mTORC2 as a critical downstream mediator of Rit-dependent survival signaling in response to reactive oxygen species (ROS) stress. Rit interacts with Sin1 (MAPKAP1), and Rit loss compromises ROS-dependent mTORC2 complex activation, blunting mTORC2-mediated phosphorylation of Akt kinase. Taken together, our findings demonstrate that the p38/mTORC2/Akt signaling cascade mediates Rit-dependent oxidative stress survival. Inhibition of this previously unrecognized cascade should be explored as a potential therapy of Rit-dependent malignancies.