Cargando…
Beta-Catenin Regulated ALDH1A1 is a Target in Ovarian Cancer Spheroids
Cancer cells form three dimensional (3D) multicellular aggregates (or spheroids) under non-adherent culture conditions. In ovarian cancer (OC), spheroids serve as a vehicle for cancer cell dissemination in the peritoneal cavity, protecting cells from environmental stress-induced anoikis. To identify...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4275429/ https://www.ncbi.nlm.nih.gov/pubmed/24954508 http://dx.doi.org/10.1038/onc.2014.178 |
Sumario: | Cancer cells form three dimensional (3D) multicellular aggregates (or spheroids) under non-adherent culture conditions. In ovarian cancer (OC), spheroids serve as a vehicle for cancer cell dissemination in the peritoneal cavity, protecting cells from environmental stress-induced anoikis. To identify new targetable molecules in OC spheroids, we investigated gene expression profiles and networks upregulated in three dimensional (3D) versus traditional monolayer culture conditions. We identified ALDH1A1, a cancer stem cell marker as being overexpressed in OC spheroids and directly connected to key elements of the β-catenin pathway. B-catenin function and ALDH1A1 expression were increased in OC spheroids vs. monolayers and in successive spheroid generations, suggesting that 3D aggregates are enriched in cells with stem cell characteristics. B-catenin knockdown decreased ALDH1A1 expression levels and β-catenin coimmunoprecipitated with the ALDH1A1 promoter, suggesting that ALDH1A1 is a direct β-catenin target. Both siRNA mediated β-catenin knockdown and A37, a novel ALDH1A1 small molecule enzymatic inhibitor described here for the first time, disrupted OC spheroid formation and cell viability (p<0.001). B-catenin knockdown blocked tumor growth and peritoneal metastasis in an OC xenograft model. These data strongly support the role of β-catenin regulated ALDH1A1 in the maintenance of OC spheroids and propose new ALDH1A1 inhibitors targeting this cell population. |
---|