Cargando…
Enhancing In Silico Protein-Based Vaccine Discovery for Eukaryotic Pathogens Using Predicted Peptide-MHC Binding and Peptide Conservation Scores
Given thousands of proteins constituting a eukaryotic pathogen, the principal objective for a high-throughput in silico vaccine discovery pipeline is to select those proteins worthy of laboratory validation. Accurate prediction of T-cell epitopes on protein antigens is one crucial piece of evidence...
Autores principales: | Goodswen, Stephen J., Kennedy, Paul J., Ellis, John T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4278717/ https://www.ncbi.nlm.nih.gov/pubmed/25545691 http://dx.doi.org/10.1371/journal.pone.0115745 |
Ejemplares similares
-
Vacceed: a high-throughput in silico vaccine candidate discovery pipeline for eukaryotic pathogens based on reverse vaccinology
por: Goodswen, Stephen J., et al.
Publicado: (2014) -
A novel strategy for classifying the output from an in silico vaccine discovery pipeline for eukaryotic pathogens using machine learning algorithms
por: Goodswen, Stephen J, et al.
Publicado: (2013) -
A state-of-the-art methodology for high-throughput in silico vaccine discovery against protozoan parasites and exemplified with discovered candidates for Toxoplasma gondii
por: Goodswen, Stephen J., et al.
Publicado: (2023) -
Evaluating High-Throughput Ab Initio Gene Finders to Discover Proteins Encoded in Eukaryotic Pathogen Genomes Missed by Laboratory Techniques
por: Goodswen, Stephen J., et al.
Publicado: (2012) -
Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research
por: Lin, Hong Huang, et al.
Publicado: (2008)