Cargando…
Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens
The immune system plays key roles in determining the fate of developing cancers by not only functioning as a tumour promoter facilitating cellular transformation, promoting tumour growth and sculpting tumour cell immunogenicity(1–6), but also as an extrinsic tumour suppressor that either destroys de...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4279952/ https://www.ncbi.nlm.nih.gov/pubmed/25428507 http://dx.doi.org/10.1038/nature13988 |
_version_ | 1782350787188359168 |
---|---|
author | Gubin, Matthew M. Zhang, Xiuli Schuster, Heiko Caron, Etienne Ward, Jeffrey P. Noguchi, Takuro Ivanova, Yulia Hundal, Jasreet Arthur, Cora D. Krebber, Willem-Jan Mulder, Gwenn E. Toebes, Mireille Vesely, Matthew D. Lam, Samuel S.K. Korman, Alan J. Allison, James P. Freeman, Gordon J. Sharpe, Arlene H. Pearce, Erika L. Schumacher, Ton N. Aebersold, Ruedi Rammensee, Hans-Georg Melief, Cornelis J. M. Mardis, Elaine R. Gillanders, William E. Artyomov, Maxim N. Schreiber, Robert D. |
author_facet | Gubin, Matthew M. Zhang, Xiuli Schuster, Heiko Caron, Etienne Ward, Jeffrey P. Noguchi, Takuro Ivanova, Yulia Hundal, Jasreet Arthur, Cora D. Krebber, Willem-Jan Mulder, Gwenn E. Toebes, Mireille Vesely, Matthew D. Lam, Samuel S.K. Korman, Alan J. Allison, James P. Freeman, Gordon J. Sharpe, Arlene H. Pearce, Erika L. Schumacher, Ton N. Aebersold, Ruedi Rammensee, Hans-Georg Melief, Cornelis J. M. Mardis, Elaine R. Gillanders, William E. Artyomov, Maxim N. Schreiber, Robert D. |
author_sort | Gubin, Matthew M. |
collection | PubMed |
description | The immune system plays key roles in determining the fate of developing cancers by not only functioning as a tumour promoter facilitating cellular transformation, promoting tumour growth and sculpting tumour cell immunogenicity(1–6), but also as an extrinsic tumour suppressor that either destroys developing tumours or restrains their expansion(1,2,7). Yet clinically apparent cancers still arise in immunocompetent individuals in part as a consequence of cancer induced immunosuppression. In many individuals, immunosuppression is mediated by Cytotoxic T-Lymphocyte Associated Antigen-4 (CTLA-4) and Programmed Death-1 (PD-1), two immunomodulatory receptors expressed on T cells(8,9). Monoclonal antibody (mAb) based therapies targeting CTLA-4 and/or PD-1 (checkpoint blockade) have yielded significant clinical benefits—including durable responses—to patients with different malignancies(10–13). However, little is known about the identity of the tumour antigens that function as the targets of T cells activated by checkpoint blockade immunotherapy and whether these antigens can be used to generate vaccines that are highly tumour-specific. Herein, we use genomics and bioinformatics approaches to identify tumour-specific mutant proteins as a major class of T cell rejection antigens following αPD-1 and/or αCTLA-4 therapy of mice bearing progressively growing sarcomas and show that therapeutic synthetic long peptide (SLP) vaccines incorporating these mutant epitopes induce tumour rejection comparably to checkpoint blockade immunotherapy. Whereas, mutant tumour antigen-specific T cells are present in progressively growing tumours, they are reactivated following treatment with αPD-1- and/or αCTLA-4 and display some overlapping but mostly treatment-specific transcriptional profiles rendering them capable of mediating tumour rejection. These results reveal that tumour-specific mutant antigens (TSMA) are not only important targets of checkpoint blockade therapy but also can be used to develop personalized cancer-specific vaccines and to probe the mechanistic underpinnings of different checkpoint blockade treatments. |
format | Online Article Text |
id | pubmed-4279952 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
record_format | MEDLINE/PubMed |
spelling | pubmed-42799522015-05-27 Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens Gubin, Matthew M. Zhang, Xiuli Schuster, Heiko Caron, Etienne Ward, Jeffrey P. Noguchi, Takuro Ivanova, Yulia Hundal, Jasreet Arthur, Cora D. Krebber, Willem-Jan Mulder, Gwenn E. Toebes, Mireille Vesely, Matthew D. Lam, Samuel S.K. Korman, Alan J. Allison, James P. Freeman, Gordon J. Sharpe, Arlene H. Pearce, Erika L. Schumacher, Ton N. Aebersold, Ruedi Rammensee, Hans-Georg Melief, Cornelis J. M. Mardis, Elaine R. Gillanders, William E. Artyomov, Maxim N. Schreiber, Robert D. Nature Article The immune system plays key roles in determining the fate of developing cancers by not only functioning as a tumour promoter facilitating cellular transformation, promoting tumour growth and sculpting tumour cell immunogenicity(1–6), but also as an extrinsic tumour suppressor that either destroys developing tumours or restrains their expansion(1,2,7). Yet clinically apparent cancers still arise in immunocompetent individuals in part as a consequence of cancer induced immunosuppression. In many individuals, immunosuppression is mediated by Cytotoxic T-Lymphocyte Associated Antigen-4 (CTLA-4) and Programmed Death-1 (PD-1), two immunomodulatory receptors expressed on T cells(8,9). Monoclonal antibody (mAb) based therapies targeting CTLA-4 and/or PD-1 (checkpoint blockade) have yielded significant clinical benefits—including durable responses—to patients with different malignancies(10–13). However, little is known about the identity of the tumour antigens that function as the targets of T cells activated by checkpoint blockade immunotherapy and whether these antigens can be used to generate vaccines that are highly tumour-specific. Herein, we use genomics and bioinformatics approaches to identify tumour-specific mutant proteins as a major class of T cell rejection antigens following αPD-1 and/or αCTLA-4 therapy of mice bearing progressively growing sarcomas and show that therapeutic synthetic long peptide (SLP) vaccines incorporating these mutant epitopes induce tumour rejection comparably to checkpoint blockade immunotherapy. Whereas, mutant tumour antigen-specific T cells are present in progressively growing tumours, they are reactivated following treatment with αPD-1- and/or αCTLA-4 and display some overlapping but mostly treatment-specific transcriptional profiles rendering them capable of mediating tumour rejection. These results reveal that tumour-specific mutant antigens (TSMA) are not only important targets of checkpoint blockade therapy but also can be used to develop personalized cancer-specific vaccines and to probe the mechanistic underpinnings of different checkpoint blockade treatments. 2014-11-27 /pmc/articles/PMC4279952/ /pubmed/25428507 http://dx.doi.org/10.1038/nature13988 Text en http://www.nature.com/authors/editorial_policies/license.html#terms Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Gubin, Matthew M. Zhang, Xiuli Schuster, Heiko Caron, Etienne Ward, Jeffrey P. Noguchi, Takuro Ivanova, Yulia Hundal, Jasreet Arthur, Cora D. Krebber, Willem-Jan Mulder, Gwenn E. Toebes, Mireille Vesely, Matthew D. Lam, Samuel S.K. Korman, Alan J. Allison, James P. Freeman, Gordon J. Sharpe, Arlene H. Pearce, Erika L. Schumacher, Ton N. Aebersold, Ruedi Rammensee, Hans-Georg Melief, Cornelis J. M. Mardis, Elaine R. Gillanders, William E. Artyomov, Maxim N. Schreiber, Robert D. Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens |
title | Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens |
title_full | Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens |
title_fullStr | Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens |
title_full_unstemmed | Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens |
title_short | Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens |
title_sort | checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4279952/ https://www.ncbi.nlm.nih.gov/pubmed/25428507 http://dx.doi.org/10.1038/nature13988 |
work_keys_str_mv | AT gubinmatthewm checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens AT zhangxiuli checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens AT schusterheiko checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens AT caronetienne checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens AT wardjeffreyp checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens AT noguchitakuro checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens AT ivanovayulia checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens AT hundaljasreet checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens AT arthurcorad checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens AT krebberwillemjan checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens AT muldergwenne checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens AT toebesmireille checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens AT veselymatthewd checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens AT lamsamuelsk checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens AT kormanalanj checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens AT allisonjamesp checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens AT freemangordonj checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens AT sharpearleneh checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens AT pearceerikal checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens AT schumachertonn checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens AT aebersoldruedi checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens AT rammenseehansgeorg checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens AT meliefcornelisjm checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens AT mardiselainer checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens AT gillanderswilliame checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens AT artyomovmaximn checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens AT schreiberrobertd checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens |