Cargando…

Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens

The immune system plays key roles in determining the fate of developing cancers by not only functioning as a tumour promoter facilitating cellular transformation, promoting tumour growth and sculpting tumour cell immunogenicity(1–6), but also as an extrinsic tumour suppressor that either destroys de...

Descripción completa

Detalles Bibliográficos
Autores principales: Gubin, Matthew M., Zhang, Xiuli, Schuster, Heiko, Caron, Etienne, Ward, Jeffrey P., Noguchi, Takuro, Ivanova, Yulia, Hundal, Jasreet, Arthur, Cora D., Krebber, Willem-Jan, Mulder, Gwenn E., Toebes, Mireille, Vesely, Matthew D., Lam, Samuel S.K., Korman, Alan J., Allison, James P., Freeman, Gordon J., Sharpe, Arlene H., Pearce, Erika L., Schumacher, Ton N., Aebersold, Ruedi, Rammensee, Hans-Georg, Melief, Cornelis J. M., Mardis, Elaine R., Gillanders, William E., Artyomov, Maxim N., Schreiber, Robert D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4279952/
https://www.ncbi.nlm.nih.gov/pubmed/25428507
http://dx.doi.org/10.1038/nature13988
_version_ 1782350787188359168
author Gubin, Matthew M.
Zhang, Xiuli
Schuster, Heiko
Caron, Etienne
Ward, Jeffrey P.
Noguchi, Takuro
Ivanova, Yulia
Hundal, Jasreet
Arthur, Cora D.
Krebber, Willem-Jan
Mulder, Gwenn E.
Toebes, Mireille
Vesely, Matthew D.
Lam, Samuel S.K.
Korman, Alan J.
Allison, James P.
Freeman, Gordon J.
Sharpe, Arlene H.
Pearce, Erika L.
Schumacher, Ton N.
Aebersold, Ruedi
Rammensee, Hans-Georg
Melief, Cornelis J. M.
Mardis, Elaine R.
Gillanders, William E.
Artyomov, Maxim N.
Schreiber, Robert D.
author_facet Gubin, Matthew M.
Zhang, Xiuli
Schuster, Heiko
Caron, Etienne
Ward, Jeffrey P.
Noguchi, Takuro
Ivanova, Yulia
Hundal, Jasreet
Arthur, Cora D.
Krebber, Willem-Jan
Mulder, Gwenn E.
Toebes, Mireille
Vesely, Matthew D.
Lam, Samuel S.K.
Korman, Alan J.
Allison, James P.
Freeman, Gordon J.
Sharpe, Arlene H.
Pearce, Erika L.
Schumacher, Ton N.
Aebersold, Ruedi
Rammensee, Hans-Georg
Melief, Cornelis J. M.
Mardis, Elaine R.
Gillanders, William E.
Artyomov, Maxim N.
Schreiber, Robert D.
author_sort Gubin, Matthew M.
collection PubMed
description The immune system plays key roles in determining the fate of developing cancers by not only functioning as a tumour promoter facilitating cellular transformation, promoting tumour growth and sculpting tumour cell immunogenicity(1–6), but also as an extrinsic tumour suppressor that either destroys developing tumours or restrains their expansion(1,2,7). Yet clinically apparent cancers still arise in immunocompetent individuals in part as a consequence of cancer induced immunosuppression. In many individuals, immunosuppression is mediated by Cytotoxic T-Lymphocyte Associated Antigen-4 (CTLA-4) and Programmed Death-1 (PD-1), two immunomodulatory receptors expressed on T cells(8,9). Monoclonal antibody (mAb) based therapies targeting CTLA-4 and/or PD-1 (checkpoint blockade) have yielded significant clinical benefits—including durable responses—to patients with different malignancies(10–13). However, little is known about the identity of the tumour antigens that function as the targets of T cells activated by checkpoint blockade immunotherapy and whether these antigens can be used to generate vaccines that are highly tumour-specific. Herein, we use genomics and bioinformatics approaches to identify tumour-specific mutant proteins as a major class of T cell rejection antigens following αPD-1 and/or αCTLA-4 therapy of mice bearing progressively growing sarcomas and show that therapeutic synthetic long peptide (SLP) vaccines incorporating these mutant epitopes induce tumour rejection comparably to checkpoint blockade immunotherapy. Whereas, mutant tumour antigen-specific T cells are present in progressively growing tumours, they are reactivated following treatment with αPD-1- and/or αCTLA-4 and display some overlapping but mostly treatment-specific transcriptional profiles rendering them capable of mediating tumour rejection. These results reveal that tumour-specific mutant antigens (TSMA) are not only important targets of checkpoint blockade therapy but also can be used to develop personalized cancer-specific vaccines and to probe the mechanistic underpinnings of different checkpoint blockade treatments.
format Online
Article
Text
id pubmed-4279952
institution National Center for Biotechnology Information
language English
publishDate 2014
record_format MEDLINE/PubMed
spelling pubmed-42799522015-05-27 Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens Gubin, Matthew M. Zhang, Xiuli Schuster, Heiko Caron, Etienne Ward, Jeffrey P. Noguchi, Takuro Ivanova, Yulia Hundal, Jasreet Arthur, Cora D. Krebber, Willem-Jan Mulder, Gwenn E. Toebes, Mireille Vesely, Matthew D. Lam, Samuel S.K. Korman, Alan J. Allison, James P. Freeman, Gordon J. Sharpe, Arlene H. Pearce, Erika L. Schumacher, Ton N. Aebersold, Ruedi Rammensee, Hans-Georg Melief, Cornelis J. M. Mardis, Elaine R. Gillanders, William E. Artyomov, Maxim N. Schreiber, Robert D. Nature Article The immune system plays key roles in determining the fate of developing cancers by not only functioning as a tumour promoter facilitating cellular transformation, promoting tumour growth and sculpting tumour cell immunogenicity(1–6), but also as an extrinsic tumour suppressor that either destroys developing tumours or restrains their expansion(1,2,7). Yet clinically apparent cancers still arise in immunocompetent individuals in part as a consequence of cancer induced immunosuppression. In many individuals, immunosuppression is mediated by Cytotoxic T-Lymphocyte Associated Antigen-4 (CTLA-4) and Programmed Death-1 (PD-1), two immunomodulatory receptors expressed on T cells(8,9). Monoclonal antibody (mAb) based therapies targeting CTLA-4 and/or PD-1 (checkpoint blockade) have yielded significant clinical benefits—including durable responses—to patients with different malignancies(10–13). However, little is known about the identity of the tumour antigens that function as the targets of T cells activated by checkpoint blockade immunotherapy and whether these antigens can be used to generate vaccines that are highly tumour-specific. Herein, we use genomics and bioinformatics approaches to identify tumour-specific mutant proteins as a major class of T cell rejection antigens following αPD-1 and/or αCTLA-4 therapy of mice bearing progressively growing sarcomas and show that therapeutic synthetic long peptide (SLP) vaccines incorporating these mutant epitopes induce tumour rejection comparably to checkpoint blockade immunotherapy. Whereas, mutant tumour antigen-specific T cells are present in progressively growing tumours, they are reactivated following treatment with αPD-1- and/or αCTLA-4 and display some overlapping but mostly treatment-specific transcriptional profiles rendering them capable of mediating tumour rejection. These results reveal that tumour-specific mutant antigens (TSMA) are not only important targets of checkpoint blockade therapy but also can be used to develop personalized cancer-specific vaccines and to probe the mechanistic underpinnings of different checkpoint blockade treatments. 2014-11-27 /pmc/articles/PMC4279952/ /pubmed/25428507 http://dx.doi.org/10.1038/nature13988 Text en http://www.nature.com/authors/editorial_policies/license.html#terms Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Gubin, Matthew M.
Zhang, Xiuli
Schuster, Heiko
Caron, Etienne
Ward, Jeffrey P.
Noguchi, Takuro
Ivanova, Yulia
Hundal, Jasreet
Arthur, Cora D.
Krebber, Willem-Jan
Mulder, Gwenn E.
Toebes, Mireille
Vesely, Matthew D.
Lam, Samuel S.K.
Korman, Alan J.
Allison, James P.
Freeman, Gordon J.
Sharpe, Arlene H.
Pearce, Erika L.
Schumacher, Ton N.
Aebersold, Ruedi
Rammensee, Hans-Georg
Melief, Cornelis J. M.
Mardis, Elaine R.
Gillanders, William E.
Artyomov, Maxim N.
Schreiber, Robert D.
Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens
title Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens
title_full Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens
title_fullStr Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens
title_full_unstemmed Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens
title_short Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens
title_sort checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4279952/
https://www.ncbi.nlm.nih.gov/pubmed/25428507
http://dx.doi.org/10.1038/nature13988
work_keys_str_mv AT gubinmatthewm checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens
AT zhangxiuli checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens
AT schusterheiko checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens
AT caronetienne checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens
AT wardjeffreyp checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens
AT noguchitakuro checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens
AT ivanovayulia checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens
AT hundaljasreet checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens
AT arthurcorad checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens
AT krebberwillemjan checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens
AT muldergwenne checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens
AT toebesmireille checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens
AT veselymatthewd checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens
AT lamsamuelsk checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens
AT kormanalanj checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens
AT allisonjamesp checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens
AT freemangordonj checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens
AT sharpearleneh checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens
AT pearceerikal checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens
AT schumachertonn checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens
AT aebersoldruedi checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens
AT rammenseehansgeorg checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens
AT meliefcornelisjm checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens
AT mardiselainer checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens
AT gillanderswilliame checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens
AT artyomovmaximn checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens
AT schreiberrobertd checkpointblockadecancerimmunotherapytargetstumourspecificmutantantigens