Cargando…
Developmental regulation of human cortex transcription and its clinical relevance at base resolution
Transcriptome analysis of human brain provides fundamental insight about development and disease, but largely relies on existing annotation. We sequenced transcriptomes of 72 prefrontal cortex samples across six life stages, and identified 50,650 differentially expression regions (DERs) associated w...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281298/ https://www.ncbi.nlm.nih.gov/pubmed/25501035 http://dx.doi.org/10.1038/nn.3898 |
Sumario: | Transcriptome analysis of human brain provides fundamental insight about development and disease, but largely relies on existing annotation. We sequenced transcriptomes of 72 prefrontal cortex samples across six life stages, and identified 50,650 differentially expression regions (DERs) associated with developmental and aging, agnostic of annotation. While many DERs annotated to non-exonic sequence (41.1%), most were similarly regulated in cytosolic mRNA extracted from independent samples. The DERs were developmentally conserved across 16 brain regions and within the developing mouse cortex, and were expressed in diverse cell and tissue types. The DERs were further enriched for active chromatin marks and clinical risk for neurodevelopmental disorders like schizophrenia. Lastly, we demonstrate quantitatively that these DERs associate with a changing neuronal phenotype related to differentiation and maturation. These data highlight conserved molecular signatures of transcriptional dynamics across brain development, some potential clinical relevance and the incomplete annotation of the human brain transcriptome. |
---|