Cargando…
Development of Chiral Bis-hydrazone Ligands for the Enantioselective Cross-Coupling Reactions of Aryldimethylsilanolates
[Image: see text] A palladium-catalyzed, enantioselective, aryl–aryl cross-coupling reaction using 1-naphthyldimethylsilanolates and chiral bis-hydrazone ligands has been developed. A family of glyoxal bis-hydrazone ligands containing various 2,5-diarylpyrrolidine groups was prepared to evaluate the...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4285162/ https://www.ncbi.nlm.nih.gov/pubmed/25494058 http://dx.doi.org/10.1021/jo502388r |
Sumario: | [Image: see text] A palladium-catalyzed, enantioselective, aryl–aryl cross-coupling reaction using 1-naphthyldimethylsilanolates and chiral bis-hydrazone ligands has been developed. A family of glyoxal bis-hydrazone ligands containing various 2,5-diarylpyrrolidine groups was prepared to evaluate the influence of ligand structure on the rate and enantioselectivity of the cross-coupling. New synthetic routes to the 1-amino-2,5-diarylpyrrolidines were developed to enable the structure/reactivity–selectivity studies. Role reversal experiments of aryldimethylsilanolates and aryl bromides result in biaryl products with the same configuration and similar enantioselectivities implying that reductive elimination is the stereodetermining step. The origin of stereoselectivity is rationalized through computational modeling of diarylpalldium(II) complex which occurs through a conrotatory motion for the two aryl groups undergoing C–C bond formation. |
---|