Cargando…
Identifying causal regulatory SNPs in ChIP-seq enhancers
Thousands of non-coding SNPs have been linked to human diseases in the past. The identification of causal alleles within this pool of disease-associated non-coding SNPs is largely impossible due to the inability to accurately quantify the impact of non-coding variation. To overcome this challenge, w...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4288203/ https://www.ncbi.nlm.nih.gov/pubmed/25520196 http://dx.doi.org/10.1093/nar/gku1318 |
Sumario: | Thousands of non-coding SNPs have been linked to human diseases in the past. The identification of causal alleles within this pool of disease-associated non-coding SNPs is largely impossible due to the inability to accurately quantify the impact of non-coding variation. To overcome this challenge, we developed a computational model that uses ChIP-seq intensity variation in response to non-coding allelic change as a proxy to the quantification of the biological role of non-coding SNPs. We applied this model to HepG2 enhancers and detected 4796 enhancer SNPs capable of disrupting enhancer activity upon allelic change. These SNPs are significantly over-represented in the binding sites of HNF4 and FOXA families of liver transcription factors and liver eQTLs. In addition, these SNPs are strongly associated with liver GWAS traits, including type I diabetes, and are linked to the abnormal levels of HDL and LDL cholesterol. Our model is directly applicable to any enhancer set for mapping causal regulatory SNPs. |
---|