Cargando…

Ash2L enables P53–dependent apoptosis by favoring stable transcription pre–initiation complex formation on its pro-apoptotic target promoters

Chromatin conformation plays a major role in all cellular decisions. We showed previously that P53 pro-apoptotic target promoters are enriched with H3K9me3 mark and induction of P53 abrogates this repressive chromatin conformation by down-regulating SUV39H1, the writer of this mark present on these...

Descripción completa

Detalles Bibliográficos
Autores principales: Mungamuri, Sathish Kumar, Wang, Shaomeng, Manfredi, James J., Gu, Wei, Aaronson, Stuart A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295002/
https://www.ncbi.nlm.nih.gov/pubmed/25023704
http://dx.doi.org/10.1038/onc.2014.198
Descripción
Sumario:Chromatin conformation plays a major role in all cellular decisions. We showed previously that P53 pro-apoptotic target promoters are enriched with H3K9me3 mark and induction of P53 abrogates this repressive chromatin conformation by down-regulating SUV39H1, the writer of this mark present on these promoters. In the present study, we demonstrate that in response to P53 stabilization, its pro-apoptotic target promoters become enriched with the H3K4me3 epigenetic mark as well as its readers, Wdr5, RbBP5 and Ash2L, which were not observed in response to SUV39H1 down-regulation alone. Overexpression of Ash2L enhanced P53–dependent apoptosis in response to chemotherapy, associated with increased P53 pro–apoptotic gene promoter occupancy and target gene expression. In contrast, pre–silencing of Ash2L abrogated P53's ability to induce the expression of these transcriptional targets, without affecting P53 or RNAP II recruitment. However, Ash2L pre–silencing, under the same conditions, resulted in reduced RNAP II ser5–CTD phosphorylation on these same pro-apoptotic target promoters, which correlated with reduced promoter occupancy of TFIIB as well as TFIIF (RAP74). Based on these findings, we propose that Ash2L acts in concert with P53 promoter occupancy to activate RNAP II by aiding formation of a stable transcription pre–initiation complex required for its activation.