Cargando…
Modeling DNA affinity landscape through two-round support vector regression with weighted degree kernels
BACKGROUND: A quantitative understanding of interactions between transcription factors (TFs) and their DNA binding sites is key to the rational design of gene regulatory networks. Recent advances in high-throughput technologies have enabled high-resolution measurements of protein-DNA binding affinit...
Autores principales: | Wang, Xiaolei, Kuwahara, Hiroyuki, Gao, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4305984/ https://www.ncbi.nlm.nih.gov/pubmed/25605483 http://dx.doi.org/10.1186/1752-0509-8-S5-S5 |
Ejemplares similares
-
Neural kernels for recursive support vector regression as a model for episodic memory
por: Leibold, Christian
Publicado: (2022) -
Kernel-Free Quadratic Surface Support Vector Regression with Non-Negative Constraints
por: Wei, Dong, et al.
Publicado: (2023) -
Learning a peptide-protein binding affinity predictor with kernel ridge regression
por: Giguère, Sébastien, et al.
Publicado: (2013) -
Classifying DNA repair genes by kernel-based support vector machines
por: Jiang, Hao, et al.
Publicado: (2011) -
Local Kernel Regression and Neural Network Approaches
to the Conformational Landscapes of Oligopeptides
por: Fabregat, Raimon, et al.
Publicado: (2022)