Cargando…

Adjudin protects rodent cochlear hair cells against gentamicin ototoxicity via the SIRT3-ROS pathway

Hearing loss resulting from hair cell degeneration is a common disease that affects millions of people worldwide. Strategies to overcome the apparent irreversible hair cell loss in mammals become paramount for hearing protection. Here we reported that, by using a well-established gentamicin-induced...

Descripción completa

Detalles Bibliográficos
Autores principales: Quan, Yizhou, Xia, Li, Shao, Jiaxiang, Yin, Shankai, Cheng, C. Yan, Xia, Weiliang, Gao, Wei-Qiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4313083/
https://www.ncbi.nlm.nih.gov/pubmed/25640330
http://dx.doi.org/10.1038/srep08181
Descripción
Sumario:Hearing loss resulting from hair cell degeneration is a common disease that affects millions of people worldwide. Strategies to overcome the apparent irreversible hair cell loss in mammals become paramount for hearing protection. Here we reported that, by using a well-established gentamicin-induced hair cell loss model in vitro, adjudin, a multi-functional small molecule drug, protected cochlear hair cells from gentamicin damage. Immunohistochemistry, Western blotting and quantitative RT-PCR analyses revealed that adjudin exerted its otoprotective effects by up-regulating the level of Sirt3, a member of Sirtuin family protein located in mitochondria, which regulates reactive oxygen species (ROS) production in cochlear cells and inhibits the production of ROS and apoptotic cells induced by gentamicin. Sirt3 silencing experiments confirmed that Sirt3-ROS signaling axis mediated hair cell protection against gentamicin by adjudin, at least in part. Furthermore, adjudin's otoprotection effects were also observed in an in vivo gentamicin-injured animal model. Taken together, these findings identify adjudin as a novel otoprotective small molecule via elevating Sirt3 levels and Sirt3 may be of therapeutic value in hair cell protection from ototoxic insults.