Cargando…

Inhibition of IRS-1 by hepatitis C virus infection leads to insulin resistance in a PTEN-dependent manner

BACKGROUND: Hepatitis C virus (HCV) infection was recently recognized as an independent risk factor for insulin resistance (IR), the onset phase of type 2 diabetes mellitus (T2DM). Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) negatively regulates PI3K/Akt signaling pathway, which i...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Ting-ting, Qin, Zhao-ling, Ren, Hao, Zhao, Ping, Qi, Zhong-tian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4323155/
https://www.ncbi.nlm.nih.gov/pubmed/25645159
http://dx.doi.org/10.1186/s12985-015-0241-4
Descripción
Sumario:BACKGROUND: Hepatitis C virus (HCV) infection was recently recognized as an independent risk factor for insulin resistance (IR), the onset phase of type 2 diabetes mellitus (T2DM). Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) negatively regulates PI3K/Akt signaling pathway, which is critical for IR development and progression of cirrhosis to hepatocellular carcinoma (HCC). Here, we investigate the role of PTEN in HCV-associated IR and explored the mechanisms by which HCV regulates PTEN. METHODS: Western blotting was used to detect the levels of insulin signaling pathway components, including insulin receptor substrate-1 (IRS-1), phosphorylated IRS-1 (pIRS-1) at serine 307 (Ser307), both phosphorylated Akt (pAkt) and total Akt. A time-course experiment measuring activation of the insulin signaling pathway was performed to assess the effect of HCV infection on insulin sensitivity by examining the phosphorylation levels of Akt and GSK3β, a downstream target of Akt. Huh7.5.1 cells were transduced with a lentiviral vector expressing PTEN or PTEN shRNA, and IRS-1 and pIRS-1 (Ser307) levels were determined in both HCV-infected and uninfected cells. The pc-JFH1-core plasmid was constructed to explore the underlying mechanisms by which HCV regulated PTEN and therefore IRS-1 levels. RESULTS: HCV infection inhibited the insulin signaling pathway by reducing the levels of IRS-1 and pAkt/Akt while increasing phosphorylation of IRS-1 Ser307. In addition, HCV infection decreased the sensitivity to insulin-induced stimulation by inhibiting Akt and GSK3β phosphorylation. Furthermore, PTEN mRNA and protein levels were reduced upon HCV infection as well as transfection with the pc-JFH1-core plasmid. The reduction in IRS-1 level observed in HCV-infected cells was rescued to a limited extent by overexpression of PTEN, which in turn slightly reduced pIRS-1 (Ser307) level. In contrast, IRS-1 level were significantly decreased and phosphorylation of IRS-1 at Ser-307 was strongly enhanced by PTEN knockdown, suggesting that both reduction in IRS-1 level and increase in IRS-1 phosphorylation at Ser307 upon HCV infection occurred in a PTEN-dependent manner. CONCLUSIONS: HCV infection suppresses the insulin signaling pathway and promotes IR by repressing PTEN, subsequently leading to decreased levels of IRS-1 and increased levels of pIRS-1 at Ser307. The findings provide new insight on the mechanism of HCV-associated IR.