Cargando…

Effects of Low Doses of Pioglitazone on Resting-State Functional Connectivity in Conscious Rat Brain

Pioglitazone (PIO) is a peroxisome proliferator-activated receptor-γ (PPARγ) agonist in clinical use for treatment of type 2 diabetes (T2DM). Accumulating evidence suggests PPARγ agonists may be useful for treating or delaying the onset of Alzheimer’s disease (AD), possibly via actions on mitochondr...

Descripción completa

Detalles Bibliográficos
Autores principales: Crenshaw, Donna G., Asin, Karen, Gottschalk, William K., Liang, Zhifeng, Zhang, Nanyin, Roses, Allen D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4324644/
https://www.ncbi.nlm.nih.gov/pubmed/25671601
http://dx.doi.org/10.1371/journal.pone.0117973
_version_ 1782356703978717184
author Crenshaw, Donna G.
Asin, Karen
Gottschalk, William K.
Liang, Zhifeng
Zhang, Nanyin
Roses, Allen D.
author_facet Crenshaw, Donna G.
Asin, Karen
Gottschalk, William K.
Liang, Zhifeng
Zhang, Nanyin
Roses, Allen D.
author_sort Crenshaw, Donna G.
collection PubMed
description Pioglitazone (PIO) is a peroxisome proliferator-activated receptor-γ (PPARγ) agonist in clinical use for treatment of type 2 diabetes (T2DM). Accumulating evidence suggests PPARγ agonists may be useful for treating or delaying the onset of Alzheimer’s disease (AD), possibly via actions on mitochondria, and that dose strengths lower than those clinically used for T2DM may be efficacious. Our major objective was to determine if low doses of pioglitazone, administered orally, impacted brain activity. We measured blood-oxygenation-level dependent (BOLD) low-frequency fluctuations in conscious rats to map changes in brain resting-state functional connectivity due to daily, oral dosing with low-dose PIO. The connectivity in two neural circuits exhibited significant changes compared with vehicle after two days of treatment with PIO at 0.08 mg/kg/day. After 7 days of treatment with a range of PIO dose-strengths, connections between 17 pairs of brain regions were significantly affected. Functional connectivity with the CA1 region of the hippocampus, a region that is involved in memory and is affected early in the progression of AD, was specifically investigated in a seed-based analysis. This approach revealed that the spatial pattern of CA1 connectivity was consistent among all dose groups at baseline, prior to treatment with PIO, and in the control group imaged on day 7. Compared to baseline and controls, increased connectivity to CA1 was observed regionally in the hypothalamus and ventral thalamus in all PIO-treated groups, but was least pronounced in the group treated with the highest dose of PIO. These data support our hypothesis that PIO modulates neuronal and/or cerebrovascular function at dose strengths significantly lower than those used to treat T2DM and therefore may be a useful therapy for neurodegenerative diseases including AD.
format Online
Article
Text
id pubmed-4324644
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-43246442015-02-18 Effects of Low Doses of Pioglitazone on Resting-State Functional Connectivity in Conscious Rat Brain Crenshaw, Donna G. Asin, Karen Gottschalk, William K. Liang, Zhifeng Zhang, Nanyin Roses, Allen D. PLoS One Research Article Pioglitazone (PIO) is a peroxisome proliferator-activated receptor-γ (PPARγ) agonist in clinical use for treatment of type 2 diabetes (T2DM). Accumulating evidence suggests PPARγ agonists may be useful for treating or delaying the onset of Alzheimer’s disease (AD), possibly via actions on mitochondria, and that dose strengths lower than those clinically used for T2DM may be efficacious. Our major objective was to determine if low doses of pioglitazone, administered orally, impacted brain activity. We measured blood-oxygenation-level dependent (BOLD) low-frequency fluctuations in conscious rats to map changes in brain resting-state functional connectivity due to daily, oral dosing with low-dose PIO. The connectivity in two neural circuits exhibited significant changes compared with vehicle after two days of treatment with PIO at 0.08 mg/kg/day. After 7 days of treatment with a range of PIO dose-strengths, connections between 17 pairs of brain regions were significantly affected. Functional connectivity with the CA1 region of the hippocampus, a region that is involved in memory and is affected early in the progression of AD, was specifically investigated in a seed-based analysis. This approach revealed that the spatial pattern of CA1 connectivity was consistent among all dose groups at baseline, prior to treatment with PIO, and in the control group imaged on day 7. Compared to baseline and controls, increased connectivity to CA1 was observed regionally in the hypothalamus and ventral thalamus in all PIO-treated groups, but was least pronounced in the group treated with the highest dose of PIO. These data support our hypothesis that PIO modulates neuronal and/or cerebrovascular function at dose strengths significantly lower than those used to treat T2DM and therefore may be a useful therapy for neurodegenerative diseases including AD. Public Library of Science 2015-02-11 /pmc/articles/PMC4324644/ /pubmed/25671601 http://dx.doi.org/10.1371/journal.pone.0117973 Text en © 2015 Crenshaw et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Crenshaw, Donna G.
Asin, Karen
Gottschalk, William K.
Liang, Zhifeng
Zhang, Nanyin
Roses, Allen D.
Effects of Low Doses of Pioglitazone on Resting-State Functional Connectivity in Conscious Rat Brain
title Effects of Low Doses of Pioglitazone on Resting-State Functional Connectivity in Conscious Rat Brain
title_full Effects of Low Doses of Pioglitazone on Resting-State Functional Connectivity in Conscious Rat Brain
title_fullStr Effects of Low Doses of Pioglitazone on Resting-State Functional Connectivity in Conscious Rat Brain
title_full_unstemmed Effects of Low Doses of Pioglitazone on Resting-State Functional Connectivity in Conscious Rat Brain
title_short Effects of Low Doses of Pioglitazone on Resting-State Functional Connectivity in Conscious Rat Brain
title_sort effects of low doses of pioglitazone on resting-state functional connectivity in conscious rat brain
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4324644/
https://www.ncbi.nlm.nih.gov/pubmed/25671601
http://dx.doi.org/10.1371/journal.pone.0117973
work_keys_str_mv AT crenshawdonnag effectsoflowdosesofpioglitazoneonrestingstatefunctionalconnectivityinconsciousratbrain
AT asinkaren effectsoflowdosesofpioglitazoneonrestingstatefunctionalconnectivityinconsciousratbrain
AT gottschalkwilliamk effectsoflowdosesofpioglitazoneonrestingstatefunctionalconnectivityinconsciousratbrain
AT liangzhifeng effectsoflowdosesofpioglitazoneonrestingstatefunctionalconnectivityinconsciousratbrain
AT zhangnanyin effectsoflowdosesofpioglitazoneonrestingstatefunctionalconnectivityinconsciousratbrain
AT rosesallend effectsoflowdosesofpioglitazoneonrestingstatefunctionalconnectivityinconsciousratbrain