Cargando…

Modeling of Memristive and Memcapacitive Behaviors in Metal-Oxide Junctions

Memristive behavior has been clearly addressed through growth and shrinkage of thin filaments in metal-oxide junctions. Capacitance change has also been observed, raising the possibility of using them as memcapacitors. Therefore, this paper proves that metal-oxide junctions can behave as a memcapaci...

Descripción completa

Detalles Bibliográficos
Autores principales: Mohamed, M. G. A., Kim, HyungWon, Cho, Tae-Won
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326217/
https://www.ncbi.nlm.nih.gov/pubmed/25705717
http://dx.doi.org/10.1155/2015/910126
Descripción
Sumario:Memristive behavior has been clearly addressed through growth and shrinkage of thin filaments in metal-oxide junctions. Capacitance change has also been observed, raising the possibility of using them as memcapacitors. Therefore, this paper proves that metal-oxide junctions can behave as a memcapacitor element by analyzing its characteristics and modeling its memristive and memcapacitive behaviors. We develop two behavioral modeling techniques: charge-dependent memcapacitor model and voltage-dependent memcapacitor model. A new physical model for metal-oxide junctions is presented based on conducting filaments variations, and its effect on device capacitance and resistance. In this model, we apply the exponential nature of growth and shrinkage of thin filaments and use Simmons' tunneling equation to calculate the tunneling current. Simulation results show how the variations of practical device parameters can change the device behavior. They clarify the basic conditions for building a memcapacitor device with negligible change in resistance.