Cargando…

Escape from crossover interference increases with maternal age

Recombination plays a fundamental role in meiosis, ensuring the proper segregation of chromosomes and contributing to genetic diversity by generating novel combinations of alleles. Here, we use data derived from direct-to-consumer genetic testing to investigate patterns of recombination in over 4,20...

Descripción completa

Detalles Bibliográficos
Autores principales: Campbell, Christopher L., Furlotte, Nicholas A., Eriksson, Nick, Hinds, David, Auton, Adam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4335350/
https://www.ncbi.nlm.nih.gov/pubmed/25695863
http://dx.doi.org/10.1038/ncomms7260
Descripción
Sumario:Recombination plays a fundamental role in meiosis, ensuring the proper segregation of chromosomes and contributing to genetic diversity by generating novel combinations of alleles. Here, we use data derived from direct-to-consumer genetic testing to investigate patterns of recombination in over 4,200 families. Our analysis reveals a number of sex differences in the distribution of recombination. We find the fraction of male events occurring within hotspots to be 4.6% higher than for females. We confirm that the recombination rate increases with maternal age, while hotspot usage decreases, with no such effects observed in males. Finally, we show that the placement of female recombination events appears to become increasingly deregulated with maternal age, with an increasing fraction of events observed within closer proximity to each other than would be expected under simple models of crossover interference.