Cargando…

Isovaline Does Not Activate GABA(B) Receptor-Coupled Potassium Currents in GABA(B) Expressing AtT-20 Cells and Cultured Rat Hippocampal Neurons

Isovaline is a non-proteinogenic amino acid that has analgesic properties. R-isovaline is a proposed agonist of the γ-aminobutyric acid type B (GABA(B)) receptor in the thalamus and peripheral tissue. Interestingly, the responses to R-isovaline differ from those of the canonical GABA(B) receptor ago...

Descripción completa

Detalles Bibliográficos
Autores principales: Pitman, Kimberley A., Borgland, Stephanie L., MacLeod, Bernard, Puil, Ernest
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337901/
https://www.ncbi.nlm.nih.gov/pubmed/25706125
http://dx.doi.org/10.1371/journal.pone.0118497
Descripción
Sumario:Isovaline is a non-proteinogenic amino acid that has analgesic properties. R-isovaline is a proposed agonist of the γ-aminobutyric acid type B (GABA(B)) receptor in the thalamus and peripheral tissue. Interestingly, the responses to R-isovaline differ from those of the canonical GABA(B) receptor agonist R-baclofen, warranting further investigation. Using whole cell recording techniques we explored isovaline actions on GABA(B) receptors coupled to rectifying K(+) channels in cells of recombinant and native receptor preparations. In AtT-20 cells transfected with GABA(B) receptor subunits, bath application of the GABA(B) receptor agonists, GABA (1 μM) and R-baclofen (5 μM) produced inwardly rectifying currents that reversed approximately at the calculated reversal potential for K(+) R- isovaline (50 μM to 1 mM) and S-isovaline (500 μM) did not evoke a current. R-isovaline applied either extracellularly (250 μM) or intracellularly (10 μM) did not alter responses to GABA at 1 μM. Co-administration of R-isovaline (250 μM) with a low concentration (10 nM) of GABA did not result in a response. In cultured rat hippocampal neurons that natively express GABA(B) receptors, R-baclofen (5 μM) induced GABA(B) receptor-dependent inward currents. Under the same conditions R-isovaline (1 or 50 μM) did not evoke a current or significantly alter R-baclofen-induced effects. Therefore, R-isovaline does not interact with recombinant or native GABA(B) receptors to open K(+) channels in these preparations.