Cargando…

Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes

Cancer is a genetic disease, but two patients rarely have identical genotypes. Similarly, patients differ in their clinicopathological parameters, but how genotypic and phenotypic heterogeneity are interconnected is not well understood. Here we build statistical models to disentangle the effect of 1...

Descripción completa

Detalles Bibliográficos
Autores principales: Gerstung, Moritz, Pellagatti, Andrea, Malcovati, Luca, Giagounidis, Aristoteles, Porta, Matteo G Della, Jädersten, Martin, Dolatshad, Hamid, Verma, Amit, Cross, Nicholas C. P., Vyas, Paresh, Killick, Sally, Hellström-Lindberg, Eva, Cazzola, Mario, Papaemmanuil, Elli, Campbell, Peter J., Boultwood, Jacqueline
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338540/
https://www.ncbi.nlm.nih.gov/pubmed/25574665
http://dx.doi.org/10.1038/ncomms6901
_version_ 1782481232394715136
author Gerstung, Moritz
Pellagatti, Andrea
Malcovati, Luca
Giagounidis, Aristoteles
Porta, Matteo G Della
Jädersten, Martin
Dolatshad, Hamid
Verma, Amit
Cross, Nicholas C. P.
Vyas, Paresh
Killick, Sally
Hellström-Lindberg, Eva
Cazzola, Mario
Papaemmanuil, Elli
Campbell, Peter J.
Boultwood, Jacqueline
author_facet Gerstung, Moritz
Pellagatti, Andrea
Malcovati, Luca
Giagounidis, Aristoteles
Porta, Matteo G Della
Jädersten, Martin
Dolatshad, Hamid
Verma, Amit
Cross, Nicholas C. P.
Vyas, Paresh
Killick, Sally
Hellström-Lindberg, Eva
Cazzola, Mario
Papaemmanuil, Elli
Campbell, Peter J.
Boultwood, Jacqueline
author_sort Gerstung, Moritz
collection PubMed
description Cancer is a genetic disease, but two patients rarely have identical genotypes. Similarly, patients differ in their clinicopathological parameters, but how genotypic and phenotypic heterogeneity are interconnected is not well understood. Here we build statistical models to disentangle the effect of 12 recurrently mutated genes and 4 cytogenetic alterations on gene expression, diagnostic clinical variables and outcome in 124 patients with myelodysplastic syndromes. Overall, one or more genetic lesions correlate with expression levels of ~20% of all genes, explaining 20–65% of observed expression variability. Differential expression patterns vary between mutations and reflect the underlying biology, such as aberrant polycomb repression for ASXL1 and EZH2 mutations or perturbed gene dosage for copy-number changes. In predicting survival, genomic, transcriptomic and diagnostic clinical variables all have utility, with the largest contribution from the transcriptome. Similar observations are made on the TCGA acute myeloid leukaemia cohort, confirming the general trends reported here.
format Online
Article
Text
id pubmed-4338540
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Pub. Group
record_format MEDLINE/PubMed
spelling pubmed-43385402015-03-20 Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes Gerstung, Moritz Pellagatti, Andrea Malcovati, Luca Giagounidis, Aristoteles Porta, Matteo G Della Jädersten, Martin Dolatshad, Hamid Verma, Amit Cross, Nicholas C. P. Vyas, Paresh Killick, Sally Hellström-Lindberg, Eva Cazzola, Mario Papaemmanuil, Elli Campbell, Peter J. Boultwood, Jacqueline Nat Commun Article Cancer is a genetic disease, but two patients rarely have identical genotypes. Similarly, patients differ in their clinicopathological parameters, but how genotypic and phenotypic heterogeneity are interconnected is not well understood. Here we build statistical models to disentangle the effect of 12 recurrently mutated genes and 4 cytogenetic alterations on gene expression, diagnostic clinical variables and outcome in 124 patients with myelodysplastic syndromes. Overall, one or more genetic lesions correlate with expression levels of ~20% of all genes, explaining 20–65% of observed expression variability. Differential expression patterns vary between mutations and reflect the underlying biology, such as aberrant polycomb repression for ASXL1 and EZH2 mutations or perturbed gene dosage for copy-number changes. In predicting survival, genomic, transcriptomic and diagnostic clinical variables all have utility, with the largest contribution from the transcriptome. Similar observations are made on the TCGA acute myeloid leukaemia cohort, confirming the general trends reported here. Nature Pub. Group 2015-01-09 /pmc/articles/PMC4338540/ /pubmed/25574665 http://dx.doi.org/10.1038/ncomms6901 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Gerstung, Moritz
Pellagatti, Andrea
Malcovati, Luca
Giagounidis, Aristoteles
Porta, Matteo G Della
Jädersten, Martin
Dolatshad, Hamid
Verma, Amit
Cross, Nicholas C. P.
Vyas, Paresh
Killick, Sally
Hellström-Lindberg, Eva
Cazzola, Mario
Papaemmanuil, Elli
Campbell, Peter J.
Boultwood, Jacqueline
Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes
title Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes
title_full Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes
title_fullStr Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes
title_full_unstemmed Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes
title_short Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes
title_sort combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338540/
https://www.ncbi.nlm.nih.gov/pubmed/25574665
http://dx.doi.org/10.1038/ncomms6901
work_keys_str_mv AT gerstungmoritz combininggenemutationwithgeneexpressiondataimprovesoutcomepredictioninmyelodysplasticsyndromes
AT pellagattiandrea combininggenemutationwithgeneexpressiondataimprovesoutcomepredictioninmyelodysplasticsyndromes
AT malcovatiluca combininggenemutationwithgeneexpressiondataimprovesoutcomepredictioninmyelodysplasticsyndromes
AT giagounidisaristoteles combininggenemutationwithgeneexpressiondataimprovesoutcomepredictioninmyelodysplasticsyndromes
AT portamatteogdella combininggenemutationwithgeneexpressiondataimprovesoutcomepredictioninmyelodysplasticsyndromes
AT jaderstenmartin combininggenemutationwithgeneexpressiondataimprovesoutcomepredictioninmyelodysplasticsyndromes
AT dolatshadhamid combininggenemutationwithgeneexpressiondataimprovesoutcomepredictioninmyelodysplasticsyndromes
AT vermaamit combininggenemutationwithgeneexpressiondataimprovesoutcomepredictioninmyelodysplasticsyndromes
AT crossnicholascp combininggenemutationwithgeneexpressiondataimprovesoutcomepredictioninmyelodysplasticsyndromes
AT vyasparesh combininggenemutationwithgeneexpressiondataimprovesoutcomepredictioninmyelodysplasticsyndromes
AT killicksally combininggenemutationwithgeneexpressiondataimprovesoutcomepredictioninmyelodysplasticsyndromes
AT hellstromlindbergeva combininggenemutationwithgeneexpressiondataimprovesoutcomepredictioninmyelodysplasticsyndromes
AT cazzolamario combininggenemutationwithgeneexpressiondataimprovesoutcomepredictioninmyelodysplasticsyndromes
AT papaemmanuilelli combininggenemutationwithgeneexpressiondataimprovesoutcomepredictioninmyelodysplasticsyndromes
AT campbellpeterj combininggenemutationwithgeneexpressiondataimprovesoutcomepredictioninmyelodysplasticsyndromes
AT boultwoodjacqueline combininggenemutationwithgeneexpressiondataimprovesoutcomepredictioninmyelodysplasticsyndromes