Cargando…

Developmental enhancers revealed by extensive DNA methylome maps of zebrafish early embryos

DNA methylation undergoes dynamic changes during development and cell differentiation. Recent genome-wide studies discovered that tissue-specific differentially methylated regions (DMRs) often overlap tissue-specific distal cis-regulatory elements. However, developmental DNA methylation dynamics of...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Hyung Joo, Lowdon, Rebecca F, Maricque, Brett, Zhang, Bo, Stevens, Michael, Li, Daofeng, Johnson, Stephen L, Wang, Ting
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339225/
https://www.ncbi.nlm.nih.gov/pubmed/25697895
http://dx.doi.org/10.1038/ncomms7315
Descripción
Sumario:DNA methylation undergoes dynamic changes during development and cell differentiation. Recent genome-wide studies discovered that tissue-specific differentially methylated regions (DMRs) often overlap tissue-specific distal cis-regulatory elements. However, developmental DNA methylation dynamics of the majority of the genomic CpGs outside gene promoters and CpG islands has not been extensively characterized. Here we generate and compare comprehensive DNA methylome maps of zebrafish developing embryos. From these maps we identify thousands of developmental stage-specific DMRs (dsDMR) across zebrafish developmental stages. The dsDMRs contain evolutionarily conserved sequences, are associated with developmental genes, and are marked with active enhancer histone post-translational modifications. Their methylation pattern correlates much stronger than promoter methylation with expression of putative target genes. When tested in vivo using a transgenic zebrafish assay, 20 out of 20 selected candidate dsDMRs exhibit functional enhancer activities. Our data suggest that developmental enhancers are a major target of DNA methylation changes during embryogenesis.