Cargando…
DNA2 drives processing and restart of reversed replication forks in human cells
Accurate processing of stalled or damaged DNA replication forks is paramount to genomic integrity and recent work points to replication fork reversal and restart as a central mechanism to ensuring high-fidelity DNA replication. Here, we identify a novel DNA2- and WRN-dependent mechanism of reversed...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4347643/ https://www.ncbi.nlm.nih.gov/pubmed/25733713 http://dx.doi.org/10.1083/jcb.201406100 |
_version_ | 1782359853588545536 |
---|---|
author | Thangavel, Saravanabhavan Berti, Matteo Levikova, Maryna Pinto, Cosimo Gomathinayagam, Shivasankari Vujanovic, Marko Zellweger, Ralph Moore, Hayley Lee, Eu Han Hendrickson, Eric A. Cejka, Petr Stewart, Sheila Lopes, Massimo Vindigni, Alessandro |
author_facet | Thangavel, Saravanabhavan Berti, Matteo Levikova, Maryna Pinto, Cosimo Gomathinayagam, Shivasankari Vujanovic, Marko Zellweger, Ralph Moore, Hayley Lee, Eu Han Hendrickson, Eric A. Cejka, Petr Stewart, Sheila Lopes, Massimo Vindigni, Alessandro |
author_sort | Thangavel, Saravanabhavan |
collection | PubMed |
description | Accurate processing of stalled or damaged DNA replication forks is paramount to genomic integrity and recent work points to replication fork reversal and restart as a central mechanism to ensuring high-fidelity DNA replication. Here, we identify a novel DNA2- and WRN-dependent mechanism of reversed replication fork processing and restart after prolonged genotoxic stress. The human DNA2 nuclease and WRN ATPase activities functionally interact to degrade reversed replication forks with a 5′-to-3′ polarity and promote replication restart, thus preventing aberrant processing of unresolved replication intermediates. Unexpectedly, EXO1, MRE11, and CtIP are not involved in the same mechanism of reversed fork processing, whereas human RECQ1 limits DNA2 activity by preventing extensive nascent strand degradation. RAD51 depletion antagonizes this mechanism, presumably by preventing reversed fork formation. These studies define a new mechanism for maintaining genome integrity tightly controlled by specific nucleolytic activities and central homologous recombination factors. |
format | Online Article Text |
id | pubmed-4347643 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-43476432015-09-02 DNA2 drives processing and restart of reversed replication forks in human cells Thangavel, Saravanabhavan Berti, Matteo Levikova, Maryna Pinto, Cosimo Gomathinayagam, Shivasankari Vujanovic, Marko Zellweger, Ralph Moore, Hayley Lee, Eu Han Hendrickson, Eric A. Cejka, Petr Stewart, Sheila Lopes, Massimo Vindigni, Alessandro J Cell Biol Research Articles Accurate processing of stalled or damaged DNA replication forks is paramount to genomic integrity and recent work points to replication fork reversal and restart as a central mechanism to ensuring high-fidelity DNA replication. Here, we identify a novel DNA2- and WRN-dependent mechanism of reversed replication fork processing and restart after prolonged genotoxic stress. The human DNA2 nuclease and WRN ATPase activities functionally interact to degrade reversed replication forks with a 5′-to-3′ polarity and promote replication restart, thus preventing aberrant processing of unresolved replication intermediates. Unexpectedly, EXO1, MRE11, and CtIP are not involved in the same mechanism of reversed fork processing, whereas human RECQ1 limits DNA2 activity by preventing extensive nascent strand degradation. RAD51 depletion antagonizes this mechanism, presumably by preventing reversed fork formation. These studies define a new mechanism for maintaining genome integrity tightly controlled by specific nucleolytic activities and central homologous recombination factors. The Rockefeller University Press 2015-03-02 /pmc/articles/PMC4347643/ /pubmed/25733713 http://dx.doi.org/10.1083/jcb.201406100 Text en © 2015 Thangavel et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/). |
spellingShingle | Research Articles Thangavel, Saravanabhavan Berti, Matteo Levikova, Maryna Pinto, Cosimo Gomathinayagam, Shivasankari Vujanovic, Marko Zellweger, Ralph Moore, Hayley Lee, Eu Han Hendrickson, Eric A. Cejka, Petr Stewart, Sheila Lopes, Massimo Vindigni, Alessandro DNA2 drives processing and restart of reversed replication forks in human cells |
title | DNA2 drives processing and restart of reversed replication forks in human cells |
title_full | DNA2 drives processing and restart of reversed replication forks in human cells |
title_fullStr | DNA2 drives processing and restart of reversed replication forks in human cells |
title_full_unstemmed | DNA2 drives processing and restart of reversed replication forks in human cells |
title_short | DNA2 drives processing and restart of reversed replication forks in human cells |
title_sort | dna2 drives processing and restart of reversed replication forks in human cells |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4347643/ https://www.ncbi.nlm.nih.gov/pubmed/25733713 http://dx.doi.org/10.1083/jcb.201406100 |
work_keys_str_mv | AT thangavelsaravanabhavan dna2drivesprocessingandrestartofreversedreplicationforksinhumancells AT bertimatteo dna2drivesprocessingandrestartofreversedreplicationforksinhumancells AT levikovamaryna dna2drivesprocessingandrestartofreversedreplicationforksinhumancells AT pintocosimo dna2drivesprocessingandrestartofreversedreplicationforksinhumancells AT gomathinayagamshivasankari dna2drivesprocessingandrestartofreversedreplicationforksinhumancells AT vujanovicmarko dna2drivesprocessingandrestartofreversedreplicationforksinhumancells AT zellwegerralph dna2drivesprocessingandrestartofreversedreplicationforksinhumancells AT moorehayley dna2drivesprocessingandrestartofreversedreplicationforksinhumancells AT leeeuhan dna2drivesprocessingandrestartofreversedreplicationforksinhumancells AT hendricksonerica dna2drivesprocessingandrestartofreversedreplicationforksinhumancells AT cejkapetr dna2drivesprocessingandrestartofreversedreplicationforksinhumancells AT stewartsheila dna2drivesprocessingandrestartofreversedreplicationforksinhumancells AT lopesmassimo dna2drivesprocessingandrestartofreversedreplicationforksinhumancells AT vindignialessandro dna2drivesprocessingandrestartofreversedreplicationforksinhumancells |