Cargando…
Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation
Ribonucleotides are frequently incorporated into DNA during eukaryotic replication. Here we map the genome-wide distribution of these ribonucleotides as markers of replication enzymology in budding yeast, using a new 5′-DNA end-mapping method, Hydrolytic End Sequencing. HydEn-Seq of DNA from ribonuc...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351163/ https://www.ncbi.nlm.nih.gov/pubmed/25622295 http://dx.doi.org/10.1038/nsmb.2957 |
Sumario: | Ribonucleotides are frequently incorporated into DNA during eukaryotic replication. Here we map the genome-wide distribution of these ribonucleotides as markers of replication enzymology in budding yeast, using a new 5′-DNA end-mapping method, Hydrolytic End Sequencing. HydEn-Seq of DNA from ribonucleotide excision repair-deficient strains reveals replicase- and strand-specific patterns of ribonucleotides in the nuclear genome. These patterns support the role of DNA polymerases α and δ in lagging strand replication and of DNA polymerase ε in leading strand replication. They identify replication origins, termination zones and variations in ribonucleotide incorporation frequency across the genome that exceed three orders of magnitude. HydEn-Seq also reveals strand-specific 5′-DNA ends at mitochondrial replication origins, suggesting unidirectional replication of a circular genome. Given the conservation of enzymes that incorporate and process ribonucleotides in DNA, HydEn-Seq can be used to track replication enzymology in other organisms. |
---|