Cargando…
Phospholipid-modified PEI-based nanocarriers for in vivo siRNA therapeutics against multi-drug resistant tumors
Multidrug resistance (MDR) mediated by P-glycoprotein overexpression in solid tumors is a major factor in the failure of many forms of chemotherapy. Here, we evaluated phospholipid-modified, low molecular weight polyethylenimine (DOPE-PEI) nanocarriers for intravenous delivery of anti-P-pg siRNA to...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352110/ https://www.ncbi.nlm.nih.gov/pubmed/25354685 http://dx.doi.org/10.1038/gt.2014.97 |
Sumario: | Multidrug resistance (MDR) mediated by P-glycoprotein overexpression in solid tumors is a major factor in the failure of many forms of chemotherapy. Here, we evaluated phospholipid-modified, low molecular weight polyethylenimine (DOPE-PEI) nanocarriers for intravenous delivery of anti-P-pg siRNA to tumors with the final goal of modulating MDR in breast cancer. First, we studied the biodistribution of DOPE-PEI nanocarriers and the effect of PEG coating in a s.c. breast tumor model. Four hours post-injection, PEGylated carriers showed an 8% injected dose (ID) accumulation in solid tumor via the enhanced permeability and retention effect and 22% ID in serum due to a prolonged, PEG-mediated circulation. Second, we established the therapeutic efficacy and safety of DOPE-PEI/siRNA-mediated P-gp down-regulation in combination with Doxorubicin (Dox) chemotherapy in MCF-7/MDR xenografts. Weekly injection of siRNA nanopreparations and Dox for up to 5 weeks sensitized the tumors to otherwise non-effective doses of Dox and decreased the tumor volume by 3-fold versus controls. This therapeutic improvement in response to Dox was attributed to the significant, sequence-specific P-gp down-regulation in excised tumors mediated by the DOPE-PEI formulations. |
---|