Cargando…

Differential effects of buffer pH on Ca(2+)-induced ROS emission with inhibited mitochondrial complexes I and III

Excessive mitochondrial reactive oxygen species (ROS) emission is a critical component in the etiology of ischemic injury. Complex I and complex III of the electron transport chain are considered the primary sources of ROS emission during cardiac ischemia and reperfusion (IR) injury. Several factors...

Descripción completa

Detalles Bibliográficos
Autores principales: Lindsay, Daniel P., Camara, Amadou K. S., Stowe, David F., Lubbe, Ryan, Aldakkak, Mohammed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4354303/
https://www.ncbi.nlm.nih.gov/pubmed/25805998
http://dx.doi.org/10.3389/fphys.2015.00058
Descripción
Sumario:Excessive mitochondrial reactive oxygen species (ROS) emission is a critical component in the etiology of ischemic injury. Complex I and complex III of the electron transport chain are considered the primary sources of ROS emission during cardiac ischemia and reperfusion (IR) injury. Several factors modulate ischemic ROS emission, such as an increase in extra-matrix Ca(2+), a decrease in extra-matrix pH, and a change in substrate utilization. Here we examined the combined effects of these factors on ROS emission from respiratory complexes I and III under conditions of simulated IR injury. Guinea pig heart mitochondria were suspended in experimental buffer at a given pH and incubated with or without CaCl(2). Mitochondria were then treated with either pyruvate, a complex I substrate, followed by rotenone, a complex I inhibitor, or succinate, a complex II substrate, followed by antimycin A, a complex III inhibitor. H(2)O(2) release rate and matrix volume were compared with and without adding CaCl(2) and at pH 7.15, 6.9, or 6.5 with pyruvate + rotenone or succinate + antimycin A to simulate conditions that may occur during in vivo cardiac IR injury. We found a large increase in H(2)O(2) release with high [CaCl(2)] and pyruvate + rotenone at pH 6.9, but not at pHs 7.15 or 6.5. Large increases in H(2)O(2) release rate also occurred at each pH with high [CaCl(2)] and succinate + antimycin A, with the highest levels observed at pH 7.15. The increases in H(2)O(2) release were associated with significant mitochondrial swelling, and both H(2)O(2) release and swelling were abolished by cyclosporine A, a desensitizer of the mitochondrial permeability transition pore (mPTP). These results indicate that ROS production by complex I and by complex III is differently affected by buffer pH and Ca(2+) loading with mPTP opening. The study suggests that changes in the levels of cytosolic Ca(2+) and pH during IR alter the relative amounts of ROS produced at mitochondrial respiratory complex I and complex III.