Cargando…

A novel fluorescent sensor protein for detecting changes in airway surface liquid glucose concentration

Both lung disease and elevation of blood glucose are associated with increased glucose concentration (from 0.4 to ~4.0 mM) in the airway surface liquid (ASL). This perturbation of ASL glucose makes the airway more susceptible to infection by respiratory pathogens. ASL is minute (~1 μl/cm(2)) and the...

Descripción completa

Detalles Bibliográficos
Autores principales: Helassa, Nordine, Garnett, James P., Farrant, Matthew, Khan, Faaizah, Pickup, John C., Hahn, Klaus M., MacNevin, Christopher J., Tarran, Robert, Baines, Deborah L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4357280/
https://www.ncbi.nlm.nih.gov/pubmed/25220254
http://dx.doi.org/10.1042/BJ20141041
Descripción
Sumario:Both lung disease and elevation of blood glucose are associated with increased glucose concentration (from 0.4 to ~4.0 mM) in the airway surface liquid (ASL). This perturbation of ASL glucose makes the airway more susceptible to infection by respiratory pathogens. ASL is minute (~1 μl/cm(2)) and the measurement of glucose concentration in the small volume ASL is extremely difficult. Therefore, we sought to develop a fluorescent biosensor with sufficient sensitivity to determine glucose concentrations in ASL in situ. We coupled a range of environmentally sensitive fluorophores to mutated forms of a glucose/galactose-binding protein (GBP) including H152C and H152C/A213R and determined their equilibrium binding properties. Of these, GBP H152C/A213R–BADAN (K(d) 0.86 ± 0.01 mM, F(max)/F(0) 3.6) was optimal for glucose sensing and in ASL increased fluorescence when basolateral glucose concentration was raised from 1 to 20 mM. Moreover, interpolation of the data showed that the glucose concentration in ASL was increased, with results similar to that using glucose oxidase analysis. The fluorescence of GBP H152C/A213R–BADAN in native ASL from human airway epithelial cultures in situ was significantly increased over time when basolateral glucose was increased from 5 to 20 mM. Overall our data indicate that this GBP is a useful tool to monitor glucose homoeostasis in the lung.