Cargando…

G protein βγ subunits regulate cardiomyocyte hypertrophy through a perinuclear Golgi phosphatidylinositol 4-phosphate hydrolysis pathway

We recently identified a novel GPCR-dependent pathway for regulation of cardiac hypertrophy that depends on Golgi phosphatidylinositol 4-phosphate (PI4P) hydrolysis by a specific isoform of phospholipase C (PLC), PLCε, at the nuclear envelope. How stimuli are transmitted from cell surface GPCRs to a...

Descripción completa

Detalles Bibliográficos
Autores principales: Malik, S., deRubio, R. G., Trembley, M., Irannejad, R., Wedegaertner, P. B., Smrcka, A. V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4357516/
https://www.ncbi.nlm.nih.gov/pubmed/25609085
http://dx.doi.org/10.1091/mbc.E14-10-1476
Descripción
Sumario:We recently identified a novel GPCR-dependent pathway for regulation of cardiac hypertrophy that depends on Golgi phosphatidylinositol 4-phosphate (PI4P) hydrolysis by a specific isoform of phospholipase C (PLC), PLCε, at the nuclear envelope. How stimuli are transmitted from cell surface GPCRs to activation of perinuclear PLCε is not clear. Here we tested the role of G protein βγ subunits. Gβγ inhibition blocked ET-1–stimulated Golgi PI4P depletion in neonatal and adult ventricular myocytes. Blocking Gβγ at the Golgi inhibited ET-1–dependent PI4P depletion and nuclear PKD activation. Translocation of Gβγ to the Golgi stimulated perinuclear Golgi PI4P depletion and nuclear PKD activation. Finally, blocking Gβγ at the Golgi or PM blocked ET-1–dependent cardiomyocyte hypertrophy. These data indicate that Gβγ regulation of the perinuclear Golgi PI4P pathway and a separate pathway at the PM is required for ET-1–stimulated hypertrophy, and the efficacy of Gβγ inhibition in preventing heart failure maybe due in part to its blocking both these pathways.