Cargando…
Comparative Metabolic Analysis of CHO Cell Clones Obtained through Cell Engineering, for IgG Productivity, Growth and Cell Longevity
Cell engineering has been used to improve animal cells’ central carbon metabolism. Due to the central carbon metabolism’s inefficiency and limiting input of carbons into the TCA cycle, key reactions belonging to these pathways have been targeted to improve cultures’ performance. Previous works have...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358941/ https://www.ncbi.nlm.nih.gov/pubmed/25768021 http://dx.doi.org/10.1371/journal.pone.0119053 |
_version_ | 1782361313805074432 |
---|---|
author | Wilkens, Camila A. Gerdtzen, Ziomara P. |
author_facet | Wilkens, Camila A. Gerdtzen, Ziomara P. |
author_sort | Wilkens, Camila A. |
collection | PubMed |
description | Cell engineering has been used to improve animal cells’ central carbon metabolism. Due to the central carbon metabolism’s inefficiency and limiting input of carbons into the TCA cycle, key reactions belonging to these pathways have been targeted to improve cultures’ performance. Previous works have shown the positive effects of overexpressing PYC2, MDH II and fructose transporter. Since each of these modifications was performed in different cell lines and culture conditions, no comparisons between these modifications can be made. In this work we aim at contrasting the effect of each of the modifications by comparing pools of transfected IgG producing CHO cells cultivated in batch cultures. Results of the culture performance of engineered clones indicate that even though all studied clones had a more efficient metabolism, not all of them showed the expected improvement on cell proliferation and/or specific productivity. CHO cells overexpressing PYC2 were able to improve their exponential growth rate but IgG synthesis was decreased, MDH II overexpression lead to a reduction in cell growth and protein production, and cells transfected with the fructose transporter gene were able to increase cell density and reach the same volumetric protein production as parental CHO cells in glucose. We propose that a redox unbalance caused by the new metabolic flux distribution could affect IgG assembly and protein secretion. In addition to reaction dynamics, thermodynamic aspects of metabolism are also discussed to further understand the effect of these modifications over central carbon metabolism. |
format | Online Article Text |
id | pubmed-4358941 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-43589412015-03-23 Comparative Metabolic Analysis of CHO Cell Clones Obtained through Cell Engineering, for IgG Productivity, Growth and Cell Longevity Wilkens, Camila A. Gerdtzen, Ziomara P. PLoS One Research Article Cell engineering has been used to improve animal cells’ central carbon metabolism. Due to the central carbon metabolism’s inefficiency and limiting input of carbons into the TCA cycle, key reactions belonging to these pathways have been targeted to improve cultures’ performance. Previous works have shown the positive effects of overexpressing PYC2, MDH II and fructose transporter. Since each of these modifications was performed in different cell lines and culture conditions, no comparisons between these modifications can be made. In this work we aim at contrasting the effect of each of the modifications by comparing pools of transfected IgG producing CHO cells cultivated in batch cultures. Results of the culture performance of engineered clones indicate that even though all studied clones had a more efficient metabolism, not all of them showed the expected improvement on cell proliferation and/or specific productivity. CHO cells overexpressing PYC2 were able to improve their exponential growth rate but IgG synthesis was decreased, MDH II overexpression lead to a reduction in cell growth and protein production, and cells transfected with the fructose transporter gene were able to increase cell density and reach the same volumetric protein production as parental CHO cells in glucose. We propose that a redox unbalance caused by the new metabolic flux distribution could affect IgG assembly and protein secretion. In addition to reaction dynamics, thermodynamic aspects of metabolism are also discussed to further understand the effect of these modifications over central carbon metabolism. Public Library of Science 2015-03-13 /pmc/articles/PMC4358941/ /pubmed/25768021 http://dx.doi.org/10.1371/journal.pone.0119053 Text en © 2015 Wilkens, Gerdtzen http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Wilkens, Camila A. Gerdtzen, Ziomara P. Comparative Metabolic Analysis of CHO Cell Clones Obtained through Cell Engineering, for IgG Productivity, Growth and Cell Longevity |
title | Comparative Metabolic Analysis of CHO Cell Clones Obtained through Cell Engineering, for IgG Productivity, Growth and Cell Longevity |
title_full | Comparative Metabolic Analysis of CHO Cell Clones Obtained through Cell Engineering, for IgG Productivity, Growth and Cell Longevity |
title_fullStr | Comparative Metabolic Analysis of CHO Cell Clones Obtained through Cell Engineering, for IgG Productivity, Growth and Cell Longevity |
title_full_unstemmed | Comparative Metabolic Analysis of CHO Cell Clones Obtained through Cell Engineering, for IgG Productivity, Growth and Cell Longevity |
title_short | Comparative Metabolic Analysis of CHO Cell Clones Obtained through Cell Engineering, for IgG Productivity, Growth and Cell Longevity |
title_sort | comparative metabolic analysis of cho cell clones obtained through cell engineering, for igg productivity, growth and cell longevity |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358941/ https://www.ncbi.nlm.nih.gov/pubmed/25768021 http://dx.doi.org/10.1371/journal.pone.0119053 |
work_keys_str_mv | AT wilkenscamilaa comparativemetabolicanalysisofchocellclonesobtainedthroughcellengineeringforiggproductivitygrowthandcelllongevity AT gerdtzenziomarap comparativemetabolicanalysisofchocellclonesobtainedthroughcellengineeringforiggproductivitygrowthandcelllongevity |