Cargando…

The Glycan Role in the Glycopeptide Immunogenicity Revealed by Atomistic Simulations and Spectroscopic Experiments on the Multiple Sclerosis Biomarker CSF114(Glc)

Glycoproteins are often recognized as not-self molecules by antibodies triggering the onset of severe autoimmune diseases such as Multiple Sclerosis (MS). Thus, the development of antigen-mimicking biomarkers represents an attractive strategy for an early diagnosis of the disease. An example is the...

Descripción completa

Detalles Bibliográficos
Autores principales: Bruno, Agostino, Scrima, Mario, Novellino, Ettore, D'Errico, Gerardino, D'Ursi, Anna Maria, Limongelli, Vittorio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361856/
https://www.ncbi.nlm.nih.gov/pubmed/25776265
http://dx.doi.org/10.1038/srep09200
Descripción
Sumario:Glycoproteins are often recognized as not-self molecules by antibodies triggering the onset of severe autoimmune diseases such as Multiple Sclerosis (MS). Thus, the development of antigen-mimicking biomarkers represents an attractive strategy for an early diagnosis of the disease. An example is the synthetic glycopeptide CSF114(Glc), which was designed and tested as MS biomarker and whose clinical application was limited by its reduced ability to detect autoantibodies in MS patients. In the attempt to improve the efficacy of CSF114(Glc), we have characterized all the events leading to the final binding of the biomarker to the autoantibody using atomistic simulations, ESR and NMR experiments. The glycosydic moiety plays a primary role in the whole process. In particular, in an environment mimicking that used in the clinical tests the glycopeptide assumes a α-helix structure that is functional for the interaction with the antibody. In this conformation CSF114(Glc) binds the monoclonal antibody mAb8-18C5 similarly to the myelin oligodendrocyte glycoprotein MOG, which is a known MS auto-antigen, thus explaining its diagnostic activity. Our study offers new molecular bases to design more effective biomarkers and provides a most valid protocol to investigate other systems where the environment effect is determinant for the biological activity.