Cargando…
A simple data-adaptive probabilistic variant calling model
BACKGROUND: Several sources of noise obfuscate the identification of single nucleotide variation (SNV) in next generation sequencing data. For instance, errors may be introduced during library construction and sequencing steps. In addition, the reference genome and the algorithms used for the alignm...
Autores principales: | Hoffmann, Steve, Stadler, Peter F, Strimmer, Korbinian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4363181/ https://www.ncbi.nlm.nih.gov/pubmed/25788974 http://dx.doi.org/10.1186/s13015-015-0037-5 |
Ejemplares similares
-
A whitening approach to probabilistic canonical correlation analysis for omics data integration
por: Jendoubi, Takoua, et al.
Publicado: (2019) -
From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data
por: Opgen-Rhein, Rainer, et al.
Publicado: (2007) -
Modeling gene expression measurement error: a quasi-likelihood approach
por: Strimmer, Korbinian
Publicado: (2003) -
Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process
por: Opgen-Rhein, Rainer, et al.
Publicado: (2007) -
Probabilistic base calling of Solexa sequencing data
por: Rougemont, Jacques, et al.
Publicado: (2008)