Phytochemical Analysis and Modulation of Antibiotic Activity by Luehea paniculata Mart. & Zucc. (Malvaceae) in Multiresistant Clinical Isolates of Candida Spp.
The high incidence of fungal infections has led to the continuous search for new drugs. Extracts of Luehea paniculata, a tree of multiple medicinal uses, were evaluated for anti-Candida activity, as well as its modulator potential of the Fluconazole antibiotic. Chemical prospecting of ethanol extrac...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4363711/ https://www.ncbi.nlm.nih.gov/pubmed/25821822 http://dx.doi.org/10.1155/2015/807670 |
Sumario: | The high incidence of fungal infections has led to the continuous search for new drugs. Extracts of Luehea paniculata, a tree of multiple medicinal uses, were evaluated for anti-Candida activity, as well as its modulator potential of the Fluconazole antibiotic. Chemical prospecting of ethanol extracts of leaf and bark was carried out, the quantification of total phenols and flavonoids, characterized by the HPLC-DAD technique. The rosmarinic acid and the vitexin flavonoid were observed as major constituents in ELELP and ESWELP, respectively. Antioxidant activity was also evaluated by the method of scavenging the free radical DPPH, and quercetin was used as standard, obtaining IC(50) values: 0.341 (mg/mL) for ELELP and 0.235 (mg/mL) for ESWELP. The microdilution assay was performed for antifungal activity against strains of Candida albicans, C. krusei, and C. tropicalis and showed minimum inhibitory concentrations values ≥1024 μg/mL. In the modulator action of extracts on Fluconazole against multiresistant clinical isolates of Candida (subinhibitory concentration minimum of 128 μg/mL), a significant synergism was observed, indicating that the extracts potentiated the antifungal effect against C. tropicalis, where antioxidant flavonoids could be responsible. This is the first report about modifying activity of the antibiotic action of a species of the genus Luehea. |
---|