Cargando…
ViVaMBC: estimating viral sequence variation in complex populations from illumina deep-sequencing data using model-based clustering
BACKGROUND: Deep-sequencing allows for an in-depth characterization of sequence variation in complex populations. However, technology associated errors may impede a powerful assessment of low-frequency mutations. Fortunately, base calls are complemented with quality scores which are derived from a q...
Autores principales: | Verbist, Bie, Clement, Lieven, Reumers, Joke, Thys, Kim, Vapirev, Alexander, Talloen, Willem, Wetzels, Yves, Meys, Joris, Aerssens, Jeroen, Bijnens, Luc, Thas, Olivier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369097/ https://www.ncbi.nlm.nih.gov/pubmed/25887734 http://dx.doi.org/10.1186/s12859-015-0458-7 |
Ejemplares similares
-
QQ-SNV: single nucleotide variant detection at low frequency by comparing the quality quantiles
por: Van der Borght, Koen, et al.
Publicado: (2015) -
Efficiency of whole genome amplification of single circulating tumor cells enriched by CellSearch and sorted by FACS
por: Swennenhuis, Joost F, et al.
Publicado: (2013) -
Sequence count data are poorly fit by the negative binomial distribution
por: Hawinkel, Stijn, et al.
Publicado: (2020) -
Sequence-specific error profile of Illumina sequencers
por: Nakamura, Kensuke, et al.
Publicado: (2011) -
Sequencing error profiles of Illumina sequencing instruments
por: Stoler, Nicholas, et al.
Publicado: (2021)