Cargando…

Cisplatin induces primary necrosis through poly(ADP-ribose) polymerase 1 activation in kidney proximal tubular cells

Treatment with cisplatin for cancer therapy has a major side effect such as nephrotoxicity; however, the role of poly (ADP-ribose) polymerase 1 (PARP1) in necrosis in response to cisplatin nephrotoxicity remains to be defined. Here we report that cisplatin induces primary necrosis through PARP1 acti...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Seulgee, Yoon, Sang Pil, Kim, Jinu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Association of Anatomists 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4371183/
https://www.ncbi.nlm.nih.gov/pubmed/25806124
http://dx.doi.org/10.5115/acb.2015.48.1.66
_version_ 1782362994012848128
author Park, Seulgee
Yoon, Sang Pil
Kim, Jinu
author_facet Park, Seulgee
Yoon, Sang Pil
Kim, Jinu
author_sort Park, Seulgee
collection PubMed
description Treatment with cisplatin for cancer therapy has a major side effect such as nephrotoxicity; however, the role of poly (ADP-ribose) polymerase 1 (PARP1) in necrosis in response to cisplatin nephrotoxicity remains to be defined. Here we report that cisplatin induces primary necrosis through PARP1 activation in kidney proximal tubular cells derived from human, pig and mouse. Treatment with high dose of cisplatin for 4 and 8 hours induced primary necrosis, as represented by the percentage of propidium iodide-positive cells and lactate dehydrogenase release. The primary necrosis was correlated with PARP1 activation during cisplatin injury. Treatment with PJ34, a potent PARP1 inhibitor, at 2 hours after injury attenuated primary necrosis after 8 hours of cisplatin injury as well as PARP1 activation. PARP1 inhibition also reduced the release of lactate dehydrogenase and high mobility group box protein 1 from kidney proximal tubular cells at 8 hours after cisplatin injury. Oxidative stress was increased by treatment with cisplatin for 8 hours as shown by 8-hydroxy-2'-deoxyguanosine and lipid hydroperoxide assays, but PARP1 inhibition at 2 hours after injury reduced the oxidative damage. These data demonstrate that cisplatin-induced PARP1 activation contributes to primary necrosis through oxidative stress in kidney proximal tubular cells, resulting in the induction of cisplatin nephrotoxicity and inflammation.
format Online
Article
Text
id pubmed-4371183
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Korean Association of Anatomists
record_format MEDLINE/PubMed
spelling pubmed-43711832015-03-24 Cisplatin induces primary necrosis through poly(ADP-ribose) polymerase 1 activation in kidney proximal tubular cells Park, Seulgee Yoon, Sang Pil Kim, Jinu Anat Cell Biol Original Article Treatment with cisplatin for cancer therapy has a major side effect such as nephrotoxicity; however, the role of poly (ADP-ribose) polymerase 1 (PARP1) in necrosis in response to cisplatin nephrotoxicity remains to be defined. Here we report that cisplatin induces primary necrosis through PARP1 activation in kidney proximal tubular cells derived from human, pig and mouse. Treatment with high dose of cisplatin for 4 and 8 hours induced primary necrosis, as represented by the percentage of propidium iodide-positive cells and lactate dehydrogenase release. The primary necrosis was correlated with PARP1 activation during cisplatin injury. Treatment with PJ34, a potent PARP1 inhibitor, at 2 hours after injury attenuated primary necrosis after 8 hours of cisplatin injury as well as PARP1 activation. PARP1 inhibition also reduced the release of lactate dehydrogenase and high mobility group box protein 1 from kidney proximal tubular cells at 8 hours after cisplatin injury. Oxidative stress was increased by treatment with cisplatin for 8 hours as shown by 8-hydroxy-2'-deoxyguanosine and lipid hydroperoxide assays, but PARP1 inhibition at 2 hours after injury reduced the oxidative damage. These data demonstrate that cisplatin-induced PARP1 activation contributes to primary necrosis through oxidative stress in kidney proximal tubular cells, resulting in the induction of cisplatin nephrotoxicity and inflammation. Korean Association of Anatomists 2015-03 2015-03-20 /pmc/articles/PMC4371183/ /pubmed/25806124 http://dx.doi.org/10.5115/acb.2015.48.1.66 Text en Copyright © 2015. Anatomy & Cell Biology http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Park, Seulgee
Yoon, Sang Pil
Kim, Jinu
Cisplatin induces primary necrosis through poly(ADP-ribose) polymerase 1 activation in kidney proximal tubular cells
title Cisplatin induces primary necrosis through poly(ADP-ribose) polymerase 1 activation in kidney proximal tubular cells
title_full Cisplatin induces primary necrosis through poly(ADP-ribose) polymerase 1 activation in kidney proximal tubular cells
title_fullStr Cisplatin induces primary necrosis through poly(ADP-ribose) polymerase 1 activation in kidney proximal tubular cells
title_full_unstemmed Cisplatin induces primary necrosis through poly(ADP-ribose) polymerase 1 activation in kidney proximal tubular cells
title_short Cisplatin induces primary necrosis through poly(ADP-ribose) polymerase 1 activation in kidney proximal tubular cells
title_sort cisplatin induces primary necrosis through poly(adp-ribose) polymerase 1 activation in kidney proximal tubular cells
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4371183/
https://www.ncbi.nlm.nih.gov/pubmed/25806124
http://dx.doi.org/10.5115/acb.2015.48.1.66
work_keys_str_mv AT parkseulgee cisplatininducesprimarynecrosisthroughpolyadpribosepolymerase1activationinkidneyproximaltubularcells
AT yoonsangpil cisplatininducesprimarynecrosisthroughpolyadpribosepolymerase1activationinkidneyproximaltubularcells
AT kimjinu cisplatininducesprimarynecrosisthroughpolyadpribosepolymerase1activationinkidneyproximaltubularcells