Cargando…
QSAR based model for discriminating EGFR inhibitors and non-inhibitors using Random forest
BACKGROUND: Epidermal Growth Factor Receptor (EGFR) is a well-characterized cancer drug target. In the past, several QSAR models have been developed for predicting inhibition activity of molecules against EGFR. These models are useful to a limited set of molecules for a particular class like quinazo...
Autores principales: | Singh, Harinder, Singh, Sandeep, Singla, Deepak, Agarwal, Subhash M, Raghava, Gajendra P S |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4372225/ https://www.ncbi.nlm.nih.gov/pubmed/25880749 http://dx.doi.org/10.1186/s13062-015-0046-9 |
Ejemplares similares
-
QSAR-Based Models for Designing Quinazoline/Imidazothiazoles/Pyrazolopyrimidines Based Inhibitors against Wild and Mutant EGFR
por: Chauhan, Jagat Singh, et al.
Publicado: (2014) -
2D-QSAR and 3D-QSAR Analyses for EGFR Inhibitors
por: Zhao, Manman, et al.
Publicado: (2017) -
Designing of inhibitors against drug tolerant Mycobacterium tuberculosis (H37Rv)
por: Singla, Deepak, et al.
Publicado: (2013) -
A web server for predicting inhibitors against bacterial target GlmU protein
por: Singla, Deepak, et al.
Publicado: (2011) -
Designing of promiscuous inhibitors against pancreatic cancer cell lines
por: Kumar, Rahul, et al.
Publicado: (2014)