Cargando…
The cAMP sensors, EPAC1 and EPAC2, display distinct subcellular distributions despite sharing a common nuclear pore localisation signal
We have identified a conserved nuclear pore localisation signal (NPLS; amino acids 764–838 of EPAC1) in the catalytic domains of the cAMP-sensors, EPAC1 and EPAC2A. Consequently, EPAC1 is mainly localised to the nuclear pore complex in HEK293T cells where it becomes activated following stimulation w...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4372255/ https://www.ncbi.nlm.nih.gov/pubmed/25683912 http://dx.doi.org/10.1016/j.cellsig.2015.02.009 |
_version_ | 1782363147030495232 |
---|---|
author | Parnell, Euan Smith, Brian O. Yarwood, Stephen J. |
author_facet | Parnell, Euan Smith, Brian O. Yarwood, Stephen J. |
author_sort | Parnell, Euan |
collection | PubMed |
description | We have identified a conserved nuclear pore localisation signal (NPLS; amino acids 764–838 of EPAC1) in the catalytic domains of the cAMP-sensors, EPAC1 and EPAC2A. Consequently, EPAC1 is mainly localised to the nuclear pore complex in HEK293T cells where it becomes activated following stimulation with cAMP. In contrast, structural models indicate that the cAMP-binding domain of EPAC2A (CNBD1) blocks access to the conserved NPLS in EPAC2A, reducing its ability to interact with nuclear binding sites. Consequently, a naturally occurring EPAC2 isoform, EPAC2B, which lacks CNBD1 is enriched in nuclear fractions, similar to EPAC1. Structural differences in EPAC isoforms may therefore determine their intracellular location and their response to elevations in intracellular cAMP. |
format | Online Article Text |
id | pubmed-4372255 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Elsevier Science Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-43722552015-05-01 The cAMP sensors, EPAC1 and EPAC2, display distinct subcellular distributions despite sharing a common nuclear pore localisation signal Parnell, Euan Smith, Brian O. Yarwood, Stephen J. Cell Signal Article We have identified a conserved nuclear pore localisation signal (NPLS; amino acids 764–838 of EPAC1) in the catalytic domains of the cAMP-sensors, EPAC1 and EPAC2A. Consequently, EPAC1 is mainly localised to the nuclear pore complex in HEK293T cells where it becomes activated following stimulation with cAMP. In contrast, structural models indicate that the cAMP-binding domain of EPAC2A (CNBD1) blocks access to the conserved NPLS in EPAC2A, reducing its ability to interact with nuclear binding sites. Consequently, a naturally occurring EPAC2 isoform, EPAC2B, which lacks CNBD1 is enriched in nuclear fractions, similar to EPAC1. Structural differences in EPAC isoforms may therefore determine their intracellular location and their response to elevations in intracellular cAMP. Elsevier Science Ltd 2015-05 /pmc/articles/PMC4372255/ /pubmed/25683912 http://dx.doi.org/10.1016/j.cellsig.2015.02.009 Text en © 2015 The Authors. Published by Elsevier Inc. http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Parnell, Euan Smith, Brian O. Yarwood, Stephen J. The cAMP sensors, EPAC1 and EPAC2, display distinct subcellular distributions despite sharing a common nuclear pore localisation signal |
title | The cAMP sensors, EPAC1 and EPAC2, display distinct subcellular distributions despite sharing a common nuclear pore localisation signal |
title_full | The cAMP sensors, EPAC1 and EPAC2, display distinct subcellular distributions despite sharing a common nuclear pore localisation signal |
title_fullStr | The cAMP sensors, EPAC1 and EPAC2, display distinct subcellular distributions despite sharing a common nuclear pore localisation signal |
title_full_unstemmed | The cAMP sensors, EPAC1 and EPAC2, display distinct subcellular distributions despite sharing a common nuclear pore localisation signal |
title_short | The cAMP sensors, EPAC1 and EPAC2, display distinct subcellular distributions despite sharing a common nuclear pore localisation signal |
title_sort | camp sensors, epac1 and epac2, display distinct subcellular distributions despite sharing a common nuclear pore localisation signal |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4372255/ https://www.ncbi.nlm.nih.gov/pubmed/25683912 http://dx.doi.org/10.1016/j.cellsig.2015.02.009 |
work_keys_str_mv | AT parnelleuan thecampsensorsepac1andepac2displaydistinctsubcellulardistributionsdespitesharingacommonnuclearporelocalisationsignal AT smithbriano thecampsensorsepac1andepac2displaydistinctsubcellulardistributionsdespitesharingacommonnuclearporelocalisationsignal AT yarwoodstephenj thecampsensorsepac1andepac2displaydistinctsubcellulardistributionsdespitesharingacommonnuclearporelocalisationsignal AT parnelleuan campsensorsepac1andepac2displaydistinctsubcellulardistributionsdespitesharingacommonnuclearporelocalisationsignal AT smithbriano campsensorsepac1andepac2displaydistinctsubcellulardistributionsdespitesharingacommonnuclearporelocalisationsignal AT yarwoodstephenj campsensorsepac1andepac2displaydistinctsubcellulardistributionsdespitesharingacommonnuclearporelocalisationsignal |