Cargando…

Evidence for a Direct Effect of the NAD(+) Precursor Acipimox on Muscle Mitochondrial Function in Humans

Recent preclinical studies showed the potential of nicotinamide adenine dinucleotide (NAD(+)) precursors to increase oxidative phosphorylation and improve metabolic health, but human data are lacking. We hypothesize that the nicotinic acid derivative acipimox, an NAD(+) precursor, would directly aff...

Descripción completa

Detalles Bibliográficos
Autores principales: van de Weijer, Tineke, Phielix, Esther, Bilet, Lena, Williams, Evan G., Ropelle, Eduardo R., Bierwagen, Alessandra, Livingstone, Roshan, Nowotny, Peter, Sparks, Lauren M., Paglialunga, Sabina, Szendroedi, Julia, Havekes, Bas, Moullan, Norman, Pirinen, Eija, Hwang, Jong-Hee, Schrauwen-Hinderling, Vera B., Hesselink, Matthijs K.C., Auwerx, Johan, Roden, Michael, Schrauwen, Patrick
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Diabetes Association 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4375076/
https://www.ncbi.nlm.nih.gov/pubmed/25352640
http://dx.doi.org/10.2337/db14-0667
_version_ 1782363585541832704
author van de Weijer, Tineke
Phielix, Esther
Bilet, Lena
Williams, Evan G.
Ropelle, Eduardo R.
Bierwagen, Alessandra
Livingstone, Roshan
Nowotny, Peter
Sparks, Lauren M.
Paglialunga, Sabina
Szendroedi, Julia
Havekes, Bas
Moullan, Norman
Pirinen, Eija
Hwang, Jong-Hee
Schrauwen-Hinderling, Vera B.
Hesselink, Matthijs K.C.
Auwerx, Johan
Roden, Michael
Schrauwen, Patrick
author_facet van de Weijer, Tineke
Phielix, Esther
Bilet, Lena
Williams, Evan G.
Ropelle, Eduardo R.
Bierwagen, Alessandra
Livingstone, Roshan
Nowotny, Peter
Sparks, Lauren M.
Paglialunga, Sabina
Szendroedi, Julia
Havekes, Bas
Moullan, Norman
Pirinen, Eija
Hwang, Jong-Hee
Schrauwen-Hinderling, Vera B.
Hesselink, Matthijs K.C.
Auwerx, Johan
Roden, Michael
Schrauwen, Patrick
author_sort van de Weijer, Tineke
collection PubMed
description Recent preclinical studies showed the potential of nicotinamide adenine dinucleotide (NAD(+)) precursors to increase oxidative phosphorylation and improve metabolic health, but human data are lacking. We hypothesize that the nicotinic acid derivative acipimox, an NAD(+) precursor, would directly affect mitochondrial function independent of reductions in nonesterified fatty acid (NEFA) concentrations. In a multicenter randomized crossover trial, 21 patients with type 2 diabetes (age 57.7 ± 1.1 years, BMI 33.4 ± 0.8 kg/m(2)) received either placebo or acipimox 250 mg three times daily dosage for 2 weeks. Acipimox treatment increased plasma NEFA levels (759 ± 44 vs. 1,135 ± 97 μmol/L for placebo vs. acipimox, P < 0.01) owing to a previously described rebound effect. As a result, skeletal muscle lipid content increased and insulin sensitivity decreased. Despite the elevated plasma NEFA levels, ex vivo mitochondrial respiration in skeletal muscle increased. Subsequently, we showed that acipimox treatment resulted in a robust elevation in expression of nuclear-encoded mitochondrial gene sets and a mitonuclear protein imbalance, which may indicate activation of the mitochondrial unfolded protein response. Further studies in C2C12 myotubes confirmed a direct effect of acipimox on NAD(+) levels, mitonuclear protein imbalance, and mitochondrial oxidative capacity. To the best of our knowledge, this study is the first to demonstrate that NAD(+) boosters can also directly affect skeletal muscle mitochondrial function in humans.
format Online
Article
Text
id pubmed-4375076
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher American Diabetes Association
record_format MEDLINE/PubMed
spelling pubmed-43750762016-04-01 Evidence for a Direct Effect of the NAD(+) Precursor Acipimox on Muscle Mitochondrial Function in Humans van de Weijer, Tineke Phielix, Esther Bilet, Lena Williams, Evan G. Ropelle, Eduardo R. Bierwagen, Alessandra Livingstone, Roshan Nowotny, Peter Sparks, Lauren M. Paglialunga, Sabina Szendroedi, Julia Havekes, Bas Moullan, Norman Pirinen, Eija Hwang, Jong-Hee Schrauwen-Hinderling, Vera B. Hesselink, Matthijs K.C. Auwerx, Johan Roden, Michael Schrauwen, Patrick Diabetes Metabolism Recent preclinical studies showed the potential of nicotinamide adenine dinucleotide (NAD(+)) precursors to increase oxidative phosphorylation and improve metabolic health, but human data are lacking. We hypothesize that the nicotinic acid derivative acipimox, an NAD(+) precursor, would directly affect mitochondrial function independent of reductions in nonesterified fatty acid (NEFA) concentrations. In a multicenter randomized crossover trial, 21 patients with type 2 diabetes (age 57.7 ± 1.1 years, BMI 33.4 ± 0.8 kg/m(2)) received either placebo or acipimox 250 mg three times daily dosage for 2 weeks. Acipimox treatment increased plasma NEFA levels (759 ± 44 vs. 1,135 ± 97 μmol/L for placebo vs. acipimox, P < 0.01) owing to a previously described rebound effect. As a result, skeletal muscle lipid content increased and insulin sensitivity decreased. Despite the elevated plasma NEFA levels, ex vivo mitochondrial respiration in skeletal muscle increased. Subsequently, we showed that acipimox treatment resulted in a robust elevation in expression of nuclear-encoded mitochondrial gene sets and a mitonuclear protein imbalance, which may indicate activation of the mitochondrial unfolded protein response. Further studies in C2C12 myotubes confirmed a direct effect of acipimox on NAD(+) levels, mitonuclear protein imbalance, and mitochondrial oxidative capacity. To the best of our knowledge, this study is the first to demonstrate that NAD(+) boosters can also directly affect skeletal muscle mitochondrial function in humans. American Diabetes Association 2015-04 2014-10-28 /pmc/articles/PMC4375076/ /pubmed/25352640 http://dx.doi.org/10.2337/db14-0667 Text en © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
spellingShingle Metabolism
van de Weijer, Tineke
Phielix, Esther
Bilet, Lena
Williams, Evan G.
Ropelle, Eduardo R.
Bierwagen, Alessandra
Livingstone, Roshan
Nowotny, Peter
Sparks, Lauren M.
Paglialunga, Sabina
Szendroedi, Julia
Havekes, Bas
Moullan, Norman
Pirinen, Eija
Hwang, Jong-Hee
Schrauwen-Hinderling, Vera B.
Hesselink, Matthijs K.C.
Auwerx, Johan
Roden, Michael
Schrauwen, Patrick
Evidence for a Direct Effect of the NAD(+) Precursor Acipimox on Muscle Mitochondrial Function in Humans
title Evidence for a Direct Effect of the NAD(+) Precursor Acipimox on Muscle Mitochondrial Function in Humans
title_full Evidence for a Direct Effect of the NAD(+) Precursor Acipimox on Muscle Mitochondrial Function in Humans
title_fullStr Evidence for a Direct Effect of the NAD(+) Precursor Acipimox on Muscle Mitochondrial Function in Humans
title_full_unstemmed Evidence for a Direct Effect of the NAD(+) Precursor Acipimox on Muscle Mitochondrial Function in Humans
title_short Evidence for a Direct Effect of the NAD(+) Precursor Acipimox on Muscle Mitochondrial Function in Humans
title_sort evidence for a direct effect of the nad(+) precursor acipimox on muscle mitochondrial function in humans
topic Metabolism
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4375076/
https://www.ncbi.nlm.nih.gov/pubmed/25352640
http://dx.doi.org/10.2337/db14-0667
work_keys_str_mv AT vandeweijertineke evidenceforadirecteffectofthenadprecursoracipimoxonmusclemitochondrialfunctioninhumans
AT phielixesther evidenceforadirecteffectofthenadprecursoracipimoxonmusclemitochondrialfunctioninhumans
AT biletlena evidenceforadirecteffectofthenadprecursoracipimoxonmusclemitochondrialfunctioninhumans
AT williamsevang evidenceforadirecteffectofthenadprecursoracipimoxonmusclemitochondrialfunctioninhumans
AT ropelleeduardor evidenceforadirecteffectofthenadprecursoracipimoxonmusclemitochondrialfunctioninhumans
AT bierwagenalessandra evidenceforadirecteffectofthenadprecursoracipimoxonmusclemitochondrialfunctioninhumans
AT livingstoneroshan evidenceforadirecteffectofthenadprecursoracipimoxonmusclemitochondrialfunctioninhumans
AT nowotnypeter evidenceforadirecteffectofthenadprecursoracipimoxonmusclemitochondrialfunctioninhumans
AT sparkslaurenm evidenceforadirecteffectofthenadprecursoracipimoxonmusclemitochondrialfunctioninhumans
AT paglialungasabina evidenceforadirecteffectofthenadprecursoracipimoxonmusclemitochondrialfunctioninhumans
AT szendroedijulia evidenceforadirecteffectofthenadprecursoracipimoxonmusclemitochondrialfunctioninhumans
AT havekesbas evidenceforadirecteffectofthenadprecursoracipimoxonmusclemitochondrialfunctioninhumans
AT moullannorman evidenceforadirecteffectofthenadprecursoracipimoxonmusclemitochondrialfunctioninhumans
AT pirineneija evidenceforadirecteffectofthenadprecursoracipimoxonmusclemitochondrialfunctioninhumans
AT hwangjonghee evidenceforadirecteffectofthenadprecursoracipimoxonmusclemitochondrialfunctioninhumans
AT schrauwenhinderlingverab evidenceforadirecteffectofthenadprecursoracipimoxonmusclemitochondrialfunctioninhumans
AT hesselinkmatthijskc evidenceforadirecteffectofthenadprecursoracipimoxonmusclemitochondrialfunctioninhumans
AT auwerxjohan evidenceforadirecteffectofthenadprecursoracipimoxonmusclemitochondrialfunctioninhumans
AT rodenmichael evidenceforadirecteffectofthenadprecursoracipimoxonmusclemitochondrialfunctioninhumans
AT schrauwenpatrick evidenceforadirecteffectofthenadprecursoracipimoxonmusclemitochondrialfunctioninhumans