Cargando…

STIM1 triggers a gating rearrangement at the extracellular mouth of the ORAI1 channel

The ER-resident regulatory protein STIM1 triggers store-operated Ca(2+) entry by direct interaction with the plasma membrane Ca(2+) channel ORAI1. The mechanism of channel gating remains undefined. Here we establish that STIM1 gates the purified recombinant ORAI1 channel in vitro, and use Tb(3+) lum...

Descripción completa

Detalles Bibliográficos
Autores principales: Gudlur, Aparna, Quintana, Ariel, Zhou, Yubin, Hirve, Nupura, Mahapatra, Sahasransu, Hogan, Patrick G
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376667/
https://www.ncbi.nlm.nih.gov/pubmed/25296861
http://dx.doi.org/10.1038/ncomms6164
Descripción
Sumario:The ER-resident regulatory protein STIM1 triggers store-operated Ca(2+) entry by direct interaction with the plasma membrane Ca(2+) channel ORAI1. The mechanism of channel gating remains undefined. Here we establish that STIM1 gates the purified recombinant ORAI1 channel in vitro, and use Tb(3+) luminescence and, separately, disulfide crosslinking to probe movements of the pore-lining helices. We show that interaction of STIM1 with the cytoplasmic face of the human ORAI1 channel elicits a conformational change near the external entrance to the pore, detectable at the pore Ca(2+)-binding residue E106 and the adjacent pore-lining residue V102. We demonstrate that a short nonpolar segment of the pore including V102 forms a barrier to ion flux in the closed channel, implicating the STIM1-dependent movement in channel gating. Our data explain the close coupling between ORAI1 channel gating and ion selectivity, and open a new avenue to dissect the gating, modulation, and inactivation of ORAI-family channels.