Cargando…

The Marine Metabolite SZ-685C Induces Apoptosis in Primary Human Nonfunctioning Pituitary Adenoma Cells by Inhibition of the Akt Pathway in Vitro

Nonfunctioning pituitary adenoma (NFPA) is one of the most common types of pituitary adenoma. The marine anthraquinone derivative SZ-685C has been isolated from the secondary metabolites of the mangrove endophytic fungus Halorosellinia sp. (No. 1403) which is found in the South China Sea. Recent res...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xin, Tan, Ting, Mao, Zhi-Gang, Lei, Ni, Wang, Zong-Ming, Hu, Bin, Chen, Zhi-Yong, She, Zhi-Gang, Zhu, Yong-Hong, Wang, Hai-Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378000/
https://www.ncbi.nlm.nih.gov/pubmed/25806467
http://dx.doi.org/10.3390/md13031569
Descripción
Sumario:Nonfunctioning pituitary adenoma (NFPA) is one of the most common types of pituitary adenoma. The marine anthraquinone derivative SZ-685C has been isolated from the secondary metabolites of the mangrove endophytic fungus Halorosellinia sp. (No. 1403) which is found in the South China Sea. Recent research has shown that SZ-685C possesses anticancer and tumor suppressive effects. The tetrazolium-based colorimetric assay (MTT assay) to investigate the different effect of the marine compound SZ-685C on the proliferation of primary human NFPA cells, rat normal pituitary cells (RPCs) and rat prolactinoma MMQ cell lines. Hoechst 33342 dye/propidium iodide (PI) double staining and fluorescein isothiocyanate-conjugated Annexin V/PI (Annexin V-FITC/PI) apoptosis assays detected an enhanced rate of apoptosis in cells treated with SZ-685C. Enhanced expression levels of caspase 3 and phosphate and tensin homolog (PTEN) were determined by Western blotting. Notably, the protein expression levels of Akt were decreased when the primary human NFPA cells were treated with SZ-685C. Here, we show that SZ-685C induces apoptosis of human NFPA cells through inhibition of the Akt pathway in vitro. The understanding of apoptosis has provided the basis for novel targeted therapies that can induce death in cancer cells or sensitize them to established cytotoxic agents and radiation therapy.