Cargando…
M(3)D: a kernel-based test for spatially correlated changes in methylation profiles
Motivation: DNA methylation is an intensely studied epigenetic mark implicated in many biological processes of direct clinical relevance. Although sequencing-based technologies are increasingly allowing high-resolution measurements of DNA methylation, statistical modelling of such data is still chal...
Autores principales: | Mayo, Tom R., Schweikert, Gabriele, Sanguinetti, Guido |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380032/ https://www.ncbi.nlm.nih.gov/pubmed/25398611 http://dx.doi.org/10.1093/bioinformatics/btu749 |
Ejemplares similares
-
MMDiff: quantitative testing for shape changes in ChIP-Seq data sets
por: Schweikert, Gabriele, et al.
Publicado: (2013) -
DGW: an exploratory data analysis tool for clustering and visualisation of epigenomic marks
por: Lukauskas, Saulius, et al.
Publicado: (2016) -
Latent likelihood ratio tests for assessing spatial kernels in epidemic models
por: Thong, David, et al.
Publicado: (2020) -
BPRMeth: a flexible Bioconductor package for modelling methylation profiles
por: Kapourani, Chantriolnt-Andreas, et al.
Publicado: (2018) -
A fast kernel independence test for cluster-correlated data
por: Song, Hoseung, et al.
Publicado: (2022)