Cargando…

Induction of tumor initiation is dependent on CD44s in c-Met(+) hepatocellular carcinoma

BACKGROUND: Hepatocellular carcinoma (HCC) patients with active hepatocyte growth factor (HGF)/c-Met signaling have a significantly worse prognosis. c-Met, a high affinity receptor for HGF, plays a critical role in cancer growth, invasion and metastasis. c-Met and CD44 have been utilized as cell sur...

Descripción completa

Detalles Bibliográficos
Autores principales: Dang, Hien, Steinway, Steven N, Ding, Wei, Rountree, Carl B
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380258/
https://www.ncbi.nlm.nih.gov/pubmed/25886575
http://dx.doi.org/10.1186/s12885-015-1166-4
Descripción
Sumario:BACKGROUND: Hepatocellular carcinoma (HCC) patients with active hepatocyte growth factor (HGF)/c-Met signaling have a significantly worse prognosis. c-Met, a high affinity receptor for HGF, plays a critical role in cancer growth, invasion and metastasis. c-Met and CD44 have been utilized as cell surface markers to identify mesenchymal tumor-initiating stem-like cells (TISC) in several cancers including HCC. In this work, we examine the complex relationship between c-Met and CD44s (standard form), and investigate the specific role of CD44s as a tumor initiator and stemness marker in HCC. METHODS: Gene and protein expression assays were utilized to investigate the relationship between CD44s and c-Met in HCC cell lines. Tumor-sphere assays and in vivo tumor assays were performed to investigate the role of CD44+ cells as TISCs. Student’s t-test or one-way ANOVA with Tukeys post-hoc test was performed to test for differences amongst groups with a p < .05 as significant. RESULTS: In an immunohistochemical and immunoblot analysis of human HCC samples, we observed that more than 39% of human HCC samples express c-Met and CD44. To study the relationship between c-Met and CD44, we used MHCC97-H cells, which are CD44(+)/c-Met(+). The knockdown of c-Met in MHCC97-H cells decreased CD44s, reduced TISC characteristics and decreased tumorsphere formation. Furthermore, we demonstrate that the inhibition of PI3K/AKT signaling decreased CD44s expression and subsequently decreased tumorsphere formation. The down-regulation of CD44s leads to a significant loss of a TISC and mesenchymal phenotype. Finally, the down-regulation of CD44s in MHCC97-H cells decreased tumor initiation in vivo compared with the scrambled control. CONCLUSIONS: In summary, our data suggest that CD44s is modulated by the c-Met-PI3K-AKT signaling cascade to support a mesenchymal and TISC phenotype in HCC cells. Moreover, c-Met could be a potential therapeutic drug for targeting HCC cells with TISC and mesenchymal phenotypes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12885-015-1166-4) contains supplementary material, which is available to authorized users.