Cargando…
Impact of program/erase operation on the performances of oxide-based resistive switching memory
Further performance improvement is necessary for resistive random access memory (RRAM) to realize its commercialization. In this work, a novel pulse operation method is proposed to improve the performance of RRAM based on Ti/HfO(2)/Pt structure. In the DC voltage sweep of the RRAM device, the SET tr...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385037/ https://www.ncbi.nlm.nih.gov/pubmed/25852336 http://dx.doi.org/10.1186/s11671-014-0721-2 |
Sumario: | Further performance improvement is necessary for resistive random access memory (RRAM) to realize its commercialization. In this work, a novel pulse operation method is proposed to improve the performance of RRAM based on Ti/HfO(2)/Pt structure. In the DC voltage sweep of the RRAM device, the SET transition is abrupt under positive bias. If current sweep with positive bias is utilized in SET process, the SET switching will become gradual, so SET is current controlled. In the negative voltage sweep for RESET process, the change of current with applied voltage is gradual, so RESET is voltage controlled. Current sweep SET and voltage sweep RESET shows better controllability on the parameter variation. Considering the SET/RESET characteristics in DC sweep, in the corresponding pulse operation, the width and height of the pulse series can be adjusted to control the SET and RESET process, respectively. Our new method is different from the traditional pulse operation in which both the width and height of program/erase pulse are simply kept constant which would lead to unnecessary damage to the device. In our new method, in each program or erase operation, a series of pulses with the width/height gradually increased are made use of to fully finish the SET/RESET switching but no excessive stress is generated at the same time, so width/height-controlled accurate SET/RESET can be achieved. Through the operation, the uniformity and endurance of the RRAM device has been significantly improved. |
---|