Cargando…

A regimen combining the Wee1 inhibitor AZD1775 with HDAC inhibitors targets human acute myeloid leukemia cells harboring various genetic mutations

AZD1775 targets the cell cycle checkpoint kinase Wee1 and potentiates genotoxic agent cytotoxicity through p53-dependent or -independent mechanisms. Here, we report that AZD1775 interacted synergistically with histone deacetylase inhibitors (HDACIs e.g., Vorinostat), which interrupt the DNA damage r...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Liang, Zhang, Yu, Chen, Shuang, Kmieciak, Maciej, Leng, Yun, Lin, Hui, Rizzo, Kathryn A., Dumur, Catherine I., Ferreira-Gonzalez, Andrea, Dai, Yun, Grant, Steven
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4387110/
https://www.ncbi.nlm.nih.gov/pubmed/25283841
http://dx.doi.org/10.1038/leu.2014.296
Descripción
Sumario:AZD1775 targets the cell cycle checkpoint kinase Wee1 and potentiates genotoxic agent cytotoxicity through p53-dependent or -independent mechanisms. Here, we report that AZD1775 interacted synergistically with histone deacetylase inhibitors (HDACIs e.g., Vorinostat), which interrupt the DNA damage response (DDR), to kill p53-wild type or -deficient as well as FLT3-ITD leukemia cells in association with pronounced Wee1 inhibition and diminished cdc2/Cdk1 Y15 phosphorylation. Similarly, Wee1 shRNA knock-down significantly sensitized cells to HDACIs. While AZD1775 induced Chk1 activation, reflected by markedly increased Chk1 S296/S317/S345 phosphorylation leading to inhibitory T14 phosphorylation of cdc2/Cdk1, these compensatory responses were sharply abrogated by HDACIs. This was accompanied by premature mitotic entry, multiple mitotic abnormalities, and accumulation of early S-phase cells displaying increased newly replicated DNA, culminating in robust DNA damage and apoptosis. The regimen was active against patient-derived AML cells harboring either wild type or mutant p53, and various NGS-defined mutations. Primitive CD34(+)/CD123(+)/CD38(−) populations enriched for leukemia-initiating progenitors, but not normal CD34(+) hematopoietic cells, were highly susceptible to this regimen. Finally, combining AZD1775 with Vorinostat in AML murine xenografts significantly reduced tumor burden and prolonged animal survival. A strategy combining Wee1 with HDACI inhibition warrants further investigation in AML with poor prognostic genetic aberrations.